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Abstract 
Objective: The effects on cortical rhythms of a single-dose (30 µg/kg) 
administration of the GABAA agonist lorazepam were examined in a randomized, 
double-blind, cross-over, placebo-controlled study with 8 healthy volunteers using 
simultaneous electroencephalography (EEG) and magnetoencephalography 
(MEG).  
Methods: The oscillations were assessed by means of adaptive classification of 
short-term spectral patterns.  
Results: Lorazepam a) decreased the percentage of EEG/MEG segments with 
fast-theta, delta-alpha, fast-theta–alpha and alpha activity and increased 
percentage of EEG/MEG segments with delta, delta–slow-theta, delta-beta, slow-
theta and polyrhythmic activity; b) decreased diversity of EEG/MEG signals (in 
terms of spectral patterns) and increased the general instability of the signal; c) 
increased stabilization periods of the spectral patterns (reduced brain information 
processing); d) maintained larger maximum periods of temporal stabilization for 
delta, slow-theta, delta–slow-theta, delta-beta and polyrhythmic activity (in terms 
of spectral patterns); e) did not increase power in the independent beta rhythm.  
Conclusion: Lorazepam caused significant reorganization of the EEG/MEG 
microstructure. These results suggest also that adaptive classification analysis of 
single short-term spectral patterns may provide additional information to 
conventional spectral analyses. 
 
Keywords: Adaptive classification, Electroencephalography (EEG), Lorazepam, 
Magnetoencephalography (MEG), Microstructure, Short-term spectral patterns. 
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1. Introduction 

 

Different psychotropic drugs appear to have their own “EEG portraits”. Barbiturates induce 

“barbiturate bursts” in the EEG (Schallek and Schlosser, 1979), whereas benzodiazepines 

significantly increase power in the slow (1–7 Hz) and fast (13–20 Hz; 21–30 Hz) wavebands 

while reducing power in the mid-range (8–12 Hz) (Greenblatt et al., 1989; Link et al., 1991; 

Mandema et al., 1992).  

Spectral EEG parameters are usually derived from averaged EEG power spectra, based on 

extended periods of time and/or broad fixed frequency bands for a specific lead. This has yielded 

a series of clinically relevant findings. However, the averaging of the EEG signal might not only 

mask the dynamics of potential effects of drugs on EEG, but also may lead to ambiguous data 

interpretation (Fingelkurts et al., 2002). At present, almost all methods of quantitative EEG 

analysis are based on certain implicit assumptions regarding the statistical characteristics of EEG, 

particularly with respect to the extent of stationarity and Gaussianity of the process. The efficacy 

of analytic techniques depends upon the degree to which such assumptions are justified by the 

characteristics of the EEG being analyzed (McEwen and Anderson, 1975). Experiments and 

analytical work have established several important facts. First, the ongoing EEG is characterized 

by natural dynamics and piecewise stationary structure (see the reviews Kaplan and Shishkin, 

2000; Fingelkurts and Fingelkurts, 2001). Second, the power variability of the main EEG spectral 

components for successive short (5–10 sec) EEG segments is in the range of 50–100% (Oken and 

Chiappa, 1988). Third, in terms of the EEG spectral variability, not only the stochastic 

fluctuations of the EEG parameters, but also a temporal structure of the signal can be observed 

(see the review, Kaplan, 1998). Moreover, the average spectral characteristics of a broad 

frequency band predominantly reflect an influence of high-amplitude synchronized segments of 

the long EEG epochs and the low-amplitude desynchronized ones may be totally obscured 

(Lazarev, 1998). Fourth, factor analysis of the narrow-band EEG spectra (Herrmann, 1982; Lorig 

and Schwartz, 1989) have demonstrated that various spectral bands can be grouped in sufficiently 

complex and dynamic way, which is far from the traditional scheme of linear frequency 

distribution from delta to gamma-bands. Hence, when examining the average brain 

electromagnetic responses to drug administration, it is not clear whether the observed effect of the 

drug is real (not the “virtual” result of averaging procedure), stable and typical for the whole 
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analyzed signal. For example, it is not clear: (1) whether the change of total power of particular 

brain oscillations results from a change in the number of their occurrence per minute rather than 

change of the average oscillations’ amplitude, and (2) whether change of total power of particular 

brain oscillations affects the whole analyzed signal or a small its portion. Thus, regardless of how 

powerful or statistically significant the different estimations of averaged EEG/MEG effects may 

be, there might be difficulties in making meaningful interpretations of these if they are not 

matched to the EEG/MEG piecewise stationary structure (Effern et al., 2000; Laskaris and 

Ioannides, 2001).  

In order to overcome the limitations of conventional spectral analysis based on averaging 

procedures and to reveal dynamic and temporal characteristics of brain activity the short-term 

spectral analysis was introduced (Barlow, 1985; Jansen and Cheng, 1988; Hilfiker and Egli, 1992; 

see also the review Kaplan and Shishkin, 2000). Assuming that the duration of the minimal 

stationary segment of an EEG is usually no more than 2 s (McEwen and Anderson, 1975; Inouye 

et al., 1995), it is possible to obtain an entire set of individual short-term spectra of various types 

in accordance with the number of stationary EEG segments. The parameters of the relative 

presence of the individual EEG segments of each type and the peculiarities of its alternation in the 

analyzed EEG may provide additional characteristics of the normal and pathological brain activity 

(Jansen, 1991; Fingelkurts et al., 2000, 2002, 2003) and possible drug effects on brain dynamics 

(Kaplan et al., 1996). Current paper presents an application of the proposed approach to the 

standard clinical problem of testing influence of psychotropic drugs on EEG/MEG. Here, we 

report on the role of brain oscillations during administration of lorazepam by means of the 

adaptive classification analysis of single short-term spectral patterns (Kaplan et al., 1999; 

Fingelkurts et al., 2003). 

EEG has been used to detect drug effects for decades but studies using MEG are scarce. 

MEG can be used to measure spontaneous rhythms in humans (Salmelin and Hari, 1994). The 

unique feature of MEG is the transparency of the skull, scalp and brain tissue to the magnetic 

fields. An EEG signal, however, is influenced by the head properties. Another difference between 

EEG and MEG is that the latter measures mostly primary currents oriented tangentially with the 

surface of the head (in sulci). EEG is sensitive to both radial (gyri) and tangential sources. To our 

knowledge there have been no previous studies investigating effects of psychotropic drugs on 
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spontaneous brain activity using MEG. Due to their different sensitivity, the combination of MEG 

with EEG may provide more comprehensive view about drug effects on brain functioning.  

Benzodiazepines, GABAA-agonists that potentiate neural inhibition, constitute a large group 

of drugs which are widely used in clinical practice (Pohlman et al., 1994; Kennedy and 

Longnecker, 1996; Swart et al., 1999; Alldredge et al., 2001). Since benzodiazepines are often 

used for clinical purposes, knowledge of the validated EEG/MEG effects of benzodiazepines, and 

temporal characteristics of these effects are necessary for the interpretation of the results.  

Additionally, benzodiazepines produce effects whose link to clinical efficacy or side effects 

are not well established. For example, interpretation of increased EEG beta activity is often 

difficult from different studies (Koelega, 1989), thus making it important a closer investigation of 

the cause of changes in the power estimates. 

Some of these difficulties can be resolved through a more uniform application of the micro-

structural signal analysis techniques. The selection of a set of sensitive EEG/MEG indices, which 

reflect the dynamic behavior of temporal EEG/MEG structure, may enable the prediction of the 

brain’s response to the drug and adds additional value to standard spectral analysis. Therefore, the 

main objectives of this study were (1) to validate and verify a number of EEG/MEG-effect 

parameters, (2) to uncover the temporal characteristics of EEG/MEG dynamics, (3) to provide a 

more complete description of EEG/MEG oscillations and (4) to study the cause of changes in the 

power of EEG/MEG beta activity after lorazepam administration in humans using an adaptive 

classification analysis of the individual short-term spectral patterns. We hypothesize that 

lorazepam would significantly modify the micro-structural organization of EEG/MEG, which is 

measured as changes in the balance of the number and the duration of EEG/MEG segments of 

different types (characterized by spectral patterns).  

 

2. Materials and Methods 

 

2.1. Subjects 

 

Eight non-smoking healthy right-handed subjects (4 males, 4 females, with ages from 20 to 

29 years) participated the study. They gave informed written consent; institutional ethical 

committee approval was obtained. Before inclusion, the subjects underwent a medical 
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examination and laboratory tests of blood to exclude physical or mental health problems. They 

were also screened for mental problems by SCL-90 (Derogatis et al., 1973; Holi et al., 1998) and 

were mild drinkers (maximally five drinks/week). The subjects reported having used no 

medication during the 2 weeks prior to the study. Subjects’ weights averaged 65.9 kg (range: 54–

76 kg). The subjects were instructed to avoid alcohol for at least 48 h, and caffeine for 12 h prior 

to the recordings.  

 

2.2. Trial design 

 

All subjects arrived at the laboratory at approximately 7:30 a.m. after an overnight fast. As 

different food components may differently alter the subject’s ongoing brain activity, an overnight 

fast intended to provided a degree of equality of the initial conditions. Following electrode 

placement and instruments calibration, the subject was seated in a comfortable chair in the 

dimmed registration room. To reduce muscle artifacts in the EEG signal, the subject was 

instructed to assume a comfortable position and to avoid movement. A subject was instructed to 

look straight (in the case of eyes open) and to avoid unnecessary eye movements. The behavior of 

the subject was monitored via TV throughout the experiment.  

A catheter was placed in the right antecubital vein for drug injection. Subjects underwent 

either lorazepam (Ativan® 4 mg/ml, Wyeth Lederle) 30-µg/kg or placebo (saline) injection in a 

randomized, double-blind, placebo-controlled, cross-over design study. The recording was started 

5 min after the infusion. All experimental sessions were carried out between 08:00 h and noon; 

successive sessions were separated by one week. Subjects underwent simultaneous EEG and 

MEG registration with eyes closed for 5 minutes and eyes open for another 5 minutes, the order of 

these conditions being counterbalanced across subjects. 

Vigilance of the subjects was controlled by the presence of sleep spindles which naturally 

appear during drowsiness (Rechtschaffen and Kales, 1968) or may be induced by sleep-inducing 

drugs (Durka and Blinowska, 2001; Durka et al., 2002). Criteria for sleep spindles detection: (1) 

visual detection: frequency 12-14 Hz; time duration 0.5-2.5 sec., i.e. one should be able to count at 

least 6 or 7 distinct waves within the half-second period; peak-to-peak amplitude above 15 mkV 

(Rechtschaffen and Kales, 1968; Zygierewicz et al., 1999); (2) spectral analysis: an increase of 
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power in the spectral band related to sleep spindles 12-15 Hz and decrease in slow wave activity 

in 0.75-4 Hz (Zygierewicz et al., 1999; Durka and Blinowska, 2001).  

 

2.3. Data acquisition 

 

All recordings were performed in the magnetically shielded room (Euroshield, Eura, 

Finland) of the BioMag Laboratory, Helsinki University Central Hospital. Spontaneous brain 

activity was recorded with a 306-channel MEG and 64-channel EEG data acquisition system 

(Neuromag Vectorview, Helsinki, Finland) with the frequency band of 0.06 to 86 Hz (sampling 

rate 300 Hz). The exact location of the subject’s head with respect to the marker coils placed on 

the scalp were determined in relation to three anatomical landmark points (the nasion and both 

preauricular points) using a 3D-digitizer (Polhemus, Colchester, VT, USA).  

EEG was recorded with an electrode cap (Virtanen et al., 1996) and an amplifier (Virtanen 

et al., 1997) specifically designed and build for simultaneous EEG and MEG measurements. The 

nose electrode was used as reference. Reasons for not using average reference (AR) need some 

clarifications. Although the average reference (AR) approach provides a sound theoretical solution 

to the EEG reference problem, it nevertheless has limitations that stem from the several 

approximations on which it rests. Most importantly, AR works only if a high spatial electrode 

density is available and if a large area of the head is covered (Bertrand et al., 1985). These two 

assumptions pose a serious problem that was investigated in several studies, but no consensus 

could be obtained with regard to the minimum electrode density and head coverage that is 

necessary to obtain unambiguous results (see Chung et al., 1996; Srinivasan et al., 1998; 

Junghöfer et al., 1999). Then, the posterior alpha rhythm appears to be mirrored at the central 

coronal line (for empirical demonstrations, see Hjorth, 1980; for a computer simulation, see 

MacGillivray and Sawyers, 1988). Thus, the increased anterior alpha activity as recorded with an 

AR of scalp electrodes might be interpreted as an artifact of the reference.  

The impedance of the recording electrodes was always below 5 kΩ. Vertical and horizontal 

electro-oculograms were recorded. The locations of the EEG electrodes and the marker coils in 

relation to the cardinal points on the head were determined with the digitizer. 

MEG and EEG epochs containing artifacts due to eye blinks, significant muscle activity, or 

movements were automatically rejected. Cardiac interference at low frequencies was also found to 
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be minimal, with no spectral peak detection at the heartbeat frequency of around 1 Hz, or its 

harmonics. The presence of an adequate signal was determined by visually checking each raw 

signal on the computer screen after automatic artifact rejection.  

 

2.4. Data processing 

 

The EEG/MEG data were split into 4 distinct groups: lorazepam closed eyes, lorazepam 

open eyes, placebo closed eyes, placebo open eyes. Data processing was performed separately for 

each 1-min portion of the signal. For the tools used for data processing, the EEG/MEG signals 

were resampled at 128 Hz. Special calculations were done prior to the sampling rate 

downsampling to attain whether aliasing would be significant and/or affect the results. The power 

spectra graphics clearly showed that the interpolation-downsampling from 300 to 128 Hz should 

not affect our results. In fact downsampling can slightly reduce/smooth the power spectra, but it 

does not generate any frequencies itself (also note that only the main peaks of spectral patterns are 

relevant in our approach). Fifty-nine MEG locations roughly corresponding to standard EEG sites 

(O1/2, Oz, PO3/4, PO7/8, POz, P1/2, P3/4, P7/8, Pz, CPz, CP1/2, CP3/4, TP7/8, TP9/10, C1/2, C3/4, C5/6, Cz, 

T7/8, FC1/2, FC3/4, FC5/6, FCz, FP1/2, FPz, FT7/8, FT9/10, F1/2, F3/4, F7/8, Fz, AF3/4, AF7/8, AFz) were 

selected. The planar gradiometer signals were analyzed in this study, as they give the largest 

signal right above the cortical source and thus straightforwardly help to distinguish activity in 

different brain areas.  

Prior to the spectral analysis, the EEG/MEG signals were bandpass-filtered in the 0.5–30-

Hz frequency range. This frequency range was chosen because approximately 98% of spectral 

power lies within these limits (Thatcher, 2001) and the main lorazepam effects on brain 

oscillations are found in this frequency band (Link et al., 1991). Thereafter, individual power 

spectra were calculated in the range of 0.5–30 Hz with 0.5-Hz resolution (61 values), using FFT 

with 2-sec Hanning window shifted by 50 samples (0.39 s) (Fig. 1) for each selected EEG/MEG 

location. These values revealed the best results in disclosing temporal patterns from the signal 

(according to a previous study). In the case of MEG, this sliding spectral analysis was performed 

for each of the two gradiometers (∂Bz/∂x and ∂Bz/∂y, where x, y, z refer to a coordinate system 

local to each sensor separately; z refer to the detection perpendicular to the scalp). The power 

spectra for the two gradiometers in each location were averaged separately. As a result, the total 
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number of individual spectral patterns (SP) for each channel of 1-min EEG/MEG recordings was 

149 (Fig.1). These SPs formed the multitude of the objects for further classification. 

 

 

 

Figure 1. The scheme of the data processing. Sliding spectral analysis, adaptive 
classification of spectral patterns (SP) and calculation of the classification profiles 
(CP) were done separately for each subject and each location of 1-min EEG/MEG.  
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Spectral-pattern (SP) variability for each 1-min signal for each condition was estimated in 

two stages. At the first stage, sequential single EEG/MEG power spectra were adaptively 

classified in each EEG/MEG location using the set of standard SPs (Fig. 1). The set of standard 

SPs (included 32 SPs) was formed using heuristic procedures and Pirson’s correlation coefficients 

(CC) (only those SPs which had minimum mutual correlation, were selected). Basic procedure of 

adaptive classification was performed in three steps. During the first step, the initial matrix of 

mutual correlations between standard and current individual SPs of analyzed EEG/MEG was 

calculated (for each channel separately). On the basis of CC which were obtained at the first step, 

the current short-term SPs were sorted: all current SPs for which the CCs were equal or exceeded 

the value 0.71 were attributed to the corresponding standard classes. During the second step, the 

current SPs which were included in a particular class, were averaged within this class. This 

procedure was performed for all classes separately for each EEG/MEG channel. On the back of 

this, the standard spectra were reconstructed but taking into account the peculiarities of spectral 

description of concrete channel of the particular EEG/MEG. Thereby an “actualization” of the 

initial standard SP set was performed. In other words, they were converted into so-called actual 

spectral patterns. This actual SP set was used further for the third step - the final classification of 

the current SPs. Details of this procedure (SCAN0.1® algorithm, suggested by Prof. Kaplan, 

Moscow State University (Kaplan et al., 1999)) can be found in Fingelkurts et al., (2003). 

Adaptive classification technique includes several adequate correction algorithms for considerable 

reduction of the variance of the single spectral estimations. This justifies the usage of individual 

short-term SPs and increases the sensitivity of this analytical approach for EEG/MEG dynamics. 

This SP classification method made it possible to identify up to 100% of individual single spectra 

in the initial EEG/MEG recordings due to algorithm’s adaptivity to local signals. Considering that 

a single EEG spectrum illustrates the particular integral dynamics of tens and hundreds of 

thousands of neurons in a given cortical area at a particular point in time (Dumermuth & Molinari, 

1987), the SPs within each class can be considered effectively generated by the same dynamics, 

with the same driving force. Whereas SPs from different classes can be considered to have had 

different driving forces and therefore have been effectively generated by different dynamics 

(Manuca and Savit, 1996). In this case, one SP may be considered as single event in EEG/MEG 

phenomenology from viewpoint of its spectral characteristics. Each SP can be labeled by the 

index of the class to which it belongs. Thus, a sequence of SP labels that represents the sequence 
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of EEG/MEG oscillatory states through which the system passes can be obtained. Hence, each 

EEG/MEG signal was reduced to a sequence of individual classified SPs. 

At the second stage, the classification profiles (CP) of spectral patterns for each EEG/MEG 

location in each subject and for the group of subjects as a whole were calculated (Fig. 1). This 

index was calculated as the relative number of cases of SP type as a percentage of the total amount 

of all SPs in any given EEG/MEG location – the histogram of the relative presence of each SP 

type (Fingelkurts et al., 2003).  

CPs were averaged across the five 1-min EEG/MEG signals for each subject separately for 

each EEG/MEG location and condition. Since results were reproduced for each of the subjects, the 

data for each condition was averaged across all subjects (separately for each EEG/MEG location). 

It was expected that these CPs would make it possible to portray (in SP description) lorazepam 

effects in detail.  

In addition, three indices were calculated for each subject separately for each condition and 

channel of each 1-min EEG/MEG:  

a) The percentage of polyrhythmic/disorganized activity (PA) – presented by polyrhythmic 

spectral patterns. A polyrhythmic spectral pattern constitutes a pattern, where peaks occupy 

majority of the frequencies within the studied range. Such spectral pattern indicates a 

mixture of activity of small neuronal subpopulations each with its own mode (Tirsch et al., 

2000).  

b) Index of non-homogeneity of classification profile (NHCP) was estimated as a ratio of the 

number of SP types detected in a given 1-min EEG/MEG to the total number in the standard 

set (32 standard SPs – 100%). This index indicates how many different SP types participate 

in CP.  

c) Index of non-stability of classification profile (NSCP) is a percent value that reflects how the 

set of distinct SP types changes along the three EEG/MEG sub-segments of 20-sec of a 

complete 1-min. 
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Where ni, is the number of distinct SP types found in a 20-sec EEG/MEG segment i; ui is the 

number of unique SP types found in segment i and not existing in any other segment. The range of 

this index is 0–67. 

 

2.5. Statistics 

We studied the behavior of each type of spectral patterns separately and did not make any 

conclusions about differences in classification profiles. In order to reveal statistically significant 

differences between lorazepam and placebo, Wilcoxon matched pairs test was applied. To control 

for repeated observations of the same measures a Bonferroni correction was made. Pcorrected is the 

value required to keep the number of false positives at P = 5%. Results are reported as average 

values with standard deviations.  

Presented here lorazepam effects were obtained for 8 subjects separately and results were 

reproduced for 7 of them (notice that it was double-blind experiment). Data for eighth subject was 

presented separately. Additionally, lorazepam effects were the same for more than 65% of EEG 

locations. Moreover, the same results were reproduced for MEG. Such consistency and 

reproducibility of the results testify that the obtained results can’t be occasional because “…by 

definition chance findings do not replicate” (Duffy et al. 1994, p. XI). 

Surrogate data were used to control for the neural origin of temporal dynamics of SPs, 

which is commonly applied as direct probing a signal for a non-random temporal structure 

(Ivanov et al., 1996). Surrogate signals have identical parameters with the original signals but do 

not have temporal correlations. Thus, each channel of the actual EEG/MEG was subjected to a 

randomized mixing of SPs. In such a way, the natural dynamics of SP sequence within each 

EEG/MEG channel were completely destroyed, but the percentage ratio between different types of 

SPs remained the same. This modified EEG/MEG was described as “random”.  
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3. Results 

 

By using the adaptive classification method, 100% of individual EEG/MEG SPs were 

successfully classified. Polyrhythmic spectra characterized 0–11% of EEG and 24–45% of MEG 

(for different locations).  

 

3.1 General characteristics of lorazepam-induced EEG/MEG changes  

 

Seven of the eight subjects showed an identical lorazepam effect (see below); this effect 

was similar for EEG and MEG. Since there were no significant differences in the results for these 

seven subjects, the entire data were averaged across them. Data for the eighth subject (S8) was 

analyzed separately. The general effect for EEG and MEG averaged across seven subjects and for 

subject S8 (EEG) is shown in Figure 2. Analysis of the classification profiles (CP) demonstrated 

that EEG/MEG during placebo was characterized by a larger percentage of alpha- (SP1 (main 

peak at 8.5 Hz); SP2 (10 Hz); SP3 (11.5 Hz)), fast-theta- (SP20 (7 Hz)) and fast-theta–alpha- 

(SP13 (main peaks at 5.5 and 10.5 Hz)) rhythmical segments when compared with lorazepam (P < 

0.0017–P < 0.00012 for different channels). EEG/MEG during lorazepam was characterized by 

larger percentage of delta- (SP25 (2.5 Hz)), slow-theta- (SP18 (4 Hz)), delta–slow-theta- (SP22 

(2.5 and 4 Hz)) and delta-beta- (SP26 (2.5 and 20.5 Hz)) rhythmical segments when compared 

with placebo (P < 0.0026–P < 0.000001 for different channels). The reaction to lorazepam was 

opposite to the group in subject S8 (Fig. 2).  

Conventional ‘energetic’ estimation (mean spectral power) of the lorazepam-related 

EEG/MEG spectral changes revealed increase power in the slow (2–4.5 Hz) and fast (21–30 Hz) 

wavebands while reducing power in the mid-range (6.5–12 Hz) (P < 0.0001; see Fig. 2, 

insertions). 

Although the lorazepam effect was similar for eyes closed and open conditions, the eyes 

opening modulated observed effect by increasing in EEG/MEG during placebo the number of 

segments with delta–slow-alpha (SP15 (2.5 and 8.5 Hz)), slow-theta–slow-alpha (SP11 (4 and 8.5 

Hz)), and delta–slow-theta–slow-alpha (SP28 (2.5, 4.5 and 8.5 Hz)) activity (P < 0.0026–P < 

0.00012 for different channels; not shown).  
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Figure 2. Classification profiles (CP) for EEG and MEG (averaged across 7 
subjects, n = 35) and the subject S8 (n = 5) during lorazepam and placebo (closed 
eyes). O2, C2 and AF4 locations are presented. The x-axis displays the labels 
(numbers) of the standard spectral patterns (SP) from 1 to 32 and their main 
frequency peaks. The y-axis displays the share of the corresponding SPs in the 
percentage from the total number of the classified SPs. A line graphic was chosen 
instead of a bar for the ease of comparison. (Note that x-axis consists of 32 discrete 
values, all the in-between values are meaningless). In the insertions conventional 
power spectra for EEG and MEG are presented. 
L = lorazepam; P = placebo. 
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Even though the microstructural organization of EEG and MEG was similar, lorazepam 

effect for EEG was more pronounced than for MEG (P < 0.001) (Fig. 2). 

Spatial distribution of spectral patterns was generally consistent with those from earlier 

studies. Thus, a significant (P < 0.0017) increase for alpha- and decrease for delta- and theta-

rhythmical EEG/MEG segments in frontal-to-occipital direction was observed (Fig. 2). At the 

same time, the absence of inter-hemisphere asymmetry for lorazepam effect was demonstrated for 

both EEG and MEG estimates.  

The main lorazepam effect described above was detected in the majority of EEG/MEG 

locations. Table 1 illustrates how many EEG channels were characterized by observed lorazepam 

effect for eyes-closed and eyes-open conditions. The lorazepam effect, in particular decrease of 

the percentage of alpha, fast-theta and fast-theta–alpha segments and increase of delta, slow-theta 

and delta-beta segments, was typical for more than 65% of EEG channels for eyes closed and 

open conditions (Table 1). If the Bonferroni correction is relaxed, then this value rises to 70-100% 

(for different SP types). Despite the different sensitivity of MEG and EEG to the underlying 

currents, MEG showed very similar results.  

Some SP types revealed specificity in accordance with medication: they appeared in the 

EEG/MEG only either during lorazepam or during placebo. Lorazepam abolished SP8 (9.5 and 

11.5 Hz), SP9 (8.5 and 11.5 Hz), SP13 (5.5 and 10.5 Hz) and SP14 (6.5 and 12.5 Hz). In the 

placebo condition, SP26 (2.5 and 20.5 Hz) was systematically absent, but appeared by lorazepam 

infusion in all subjects (not shown).  

Both in EEG (Table 2a) and in MEG (Table 2b), there was more polyrhythmic activity 

(PA), larger non-stability of CPs (NSCP) and more homogenous CPs (NHCP) during lorazepam 

when compared with placebo (P < 0.0026–P < 0.000001 for eyes closed and open conditions). 

Surprisingly, the subject S8 shared this behavior of indexes, though its direct spectral estimations 

(see above) showed the opposite effect to the group (Table 2c). 

 

 

3.2 The causes of changes in the power of EEG/MEG beta activity after lorazepam administration 

 

In contrary to previous reports (Greenblatt et al., 1989; Breimer et al., 1990; Mandema et 

al., 1992; Van Steveninck et al., 1993) and conventional spectral estimations in the present study, 
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no increase of beta activity by lorazepam was observed in the short-term spectral analysis, except 

for the appearance of the SP26 (2.5 and 20.5 Hz) in EEG/MEG for lorazepam (Fig. 2). Further, 

this SP type characterized not more than 1.5% of the total number of segments in 1-min 

EEGs/MEGs, suggesting that this activity cannot be detected in the averaged power spectrum 

obtained by conventional spectral analysis.  
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Conventional spectral analysis uses averaging procedures to obtain EEG power spectrum 

averaged out over extended periods of time and/or broad fixed frequency bands. The beta effect in 

the averaged power spectrum may originate from the averaged EEG segments with polyrhythmic 

activity. Table 2a and b illustrates that EEG/MEG segments with polyrhythmic activity (in terms 

of SPs) were presented in classification profiles more during lorazepam than during placebo. Also 
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spectral pattern 26 (2.5 and 20.5 Hz) may contribute to the beta effect in the average power 

spectrum. To check this hypothesis, all polyrhythmic SPs and SP26 were averaged separately and 

together for each EEG channel (Fig. 3).  
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Figure 3. Example of individual and averaged EEG spectral patterns (SP). (a): 
individual SPs which were found in PO4 channel are presented superimposed (left 
– polyrhythmic SPs (SP0); right – SP26 (main peaks at 2.5 and 20.5 Hz)). (b): 
averaged SPs for polyrhythmic SPs and SP26 which were averaged separately and 
together (PO4 EEG channel). (c): averaged SP for polyrhythmic SPs (F4 EEG 
channel). 

 

Figure 3a illustrates as an example individual polyrhythmic SPs and SP26, which were 

found for PO4 channel for one subject. Figure 3b represents averaged power spectra for 

polyrhythmic SPs (thin line) and SP26 (doted line) averaged separately and together (thick line) 

for PO4 EEG channel. Figure 3c represents averaged power spectrum for polyrhythmic SPs for F4 

EEG channel (SP26 were not detected in this channel). Considerable concentration of averaged 

spectral power in delta and beta frequency bands was demonstrated, supporting our hypothesis. 

 

3.3. Dynamics of temporal stabilization of the spectral patterns under the lorazepam influence 

 

Since averaged power spectrum constitutes a ‘static’ picture which eliminates dynamic 

aspects of EEG/MEG transformations (Fig. 2, insertions), temporal characteristics of EEG/MEG 

under drug influence remain a mystery. Hence, the goal of current section was to study the 

dynamics of temporal characteristics of the spectral patterns under the lorazepam influence. 

Temporal stabilization of SP types was evaluated by computing the average number (for all 

EEG/MEG locations) of successive m EEG/MEG epochs of the same SP type (including 

polyrhythmic spectra – the type “0”), where m is the range from 1 to 149 and was described as a 

“block”. In this case the particular block length reflects the particular period of temporal 

stabilization of brain oscillations. The results of this analysis for EEG and MEG are summarized 

in the Figure 4. 

The effect of the temporary stabilization of SPs in EEG both for eyes closed and open 

conditions was almost identical for lorazepam and placebo having expected common 

characteristic: this index decreased as the length of block increased. At the same time, placebo 

condition was characterized by greater index values for small periods of temporal stabilization (P 

< 0.0026–P < 0.000001 for different block lengths) and smaller index values for large periods of 

temporal stabilization (P < 0.0026–P < 0.000001 for different block lengths) when compared with 

lorazepam (Fig. 4a). Similar results were obtained for MEG (Fig. 4b). Again, the subject S8, in 
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spite of the opposite to the group effect according to direct spectral estimations, showed similar 

index value (Fig. 4c).  
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Figure 4. The average number (for all EEG/MEG locations, n = 59) of successive 
m EEG/MEG epochs of the same SP type (including polyrhythmic spectra) (the y-
axis), where m is the range from 1 to 149 (the x-axis). The values are presented as 
a percentage of the total number of the epochs in all EEG/MEG recordings, for 7 
subjects (n = 5215) and for subject S8 (n = 745).  
“Random EEG” = EEG which natural sequence of spectral pattern types has been 
completely removed in each individual channel. 
At the insertion, the EEG data presented superimposed in one graph in order to 
illustrate influence of eyes opening. 
 

To illustrate the effect of the eyes open condition, the same data were presented 

superimposed on one graphic at the insertion (Fig. 4a). The opening of the eyes (for both 

lorazepam and placebo) resulted in an increase of the number of the individual EEG segments that 

were involved in the small periods of temporal stabilization and in a decrease of the number of the 

individual EEG segments, which were involved in the large periods of temporal stabilization when 

compared with eyes closed conditions (P < 0.0026–P < 0.000001 for different block lengths) (Fig. 

4a).  

However, it is obvious that even in the absence of any correlation between the EEG/MEG 

SPs there should be a temporary stochastic stabilization of the SPs, which may reflect merely 

occasional combinations of SP types. As control for the neural origin of temporal dynamics of 

SPs, surrogate data (an EEG with a random mix of different SP types separately for each channel) 

were used. From Figure 4a it can be seen that the actual EEG data substantially differed from the 

“random EEG”. An excessive increase in the number of blocks of length 1 for “random EEG” 

may indicates a stochastic process.  

Note that the analysis presented above could not reveal the dependence between the periods 

of temporal stabilization and the type of SPs. In other words, do specific type of brain oscillations 

(in terms of SPs) maintain a particular period of temporal stabilization? Therefore, we analyzed 

the maximum periods of temporal stabilization for all SP types, which were found in CPs for 

lorazepam and placebo (both for eyes closed and open conditions) (Fig. 5). The maximum periods 

of temporal stabilization for SP types presented in the Figure 5 as block length were recalculated 

in time-scale. This analysis showed that the brain “maintains” the stabilization period of neural 

activity for lorazepam between 2.8 and 7.5 sec (for different SPs, eyes closed and open 

conditions) (Fig. 5). For placebo, this range was somewhat narrower: 3.6–6.7 sec (for different 

SPs, closed and open eyes). Moreover, for placebo, all SPs with fast-theta, delta-alpha, fast-theta–
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alpha and alpha activity were characterized by larger maximum periods of temporal stabilization 

than for lorazepam (P < 0.0026–P < 0.000001 for different SPs, eyes closed and open conditions) 

(Fig. 5). At the same time, for lorazepam, all SPs with delta, slow-theta, delta–slow-theta, delta-

beta and with polyrhythmic activity were characterized by larger maximum periods of temporal 

stabilization than for placebo (P < 0.0026–P < 0.000001 for different SPs, eyes closed and open 

conditions) (Fig. 5). The duration of such periods for “random EEG” (an EEG with a random mix 

of different SP types) was substantially lower than in the actual EEG and reached up to 2.3–2.6 

sec (for different SP types) (Fig. 5).  

 

 

Figure 5. The maximum periods of temporal stabilization (averaged across 7 
subjects) for all spectral pattern types, which were found in the EEG classification 
profiles during lorazepam and placebo (both for eyes closed and open conditions). 
The x-axis displays the labels (numbers) of the EEG spectral patterns (SP) 
corresponding to the standard SP set (including polyrhythmic spectra – type “0”). 
The y-axis displays the maximum periods of temporal stabilization for each SP 
types (in terms of block length – m EEG epochs follow in succession without SP 
type change, where m is the range from 1 to 149). Data averaged for all EEG 
locations (n = 59). 
Horizontal dotted line bar represents random range of the maximum periods of 
temporal stabilization for “Random EEG” (EEG whose natural sequence of 
spectral pattern types has been completely removed in each individual channel).  
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3.4. Comparison with conventional spectral analysis and averaging procedures 

 

The main effect of lorazepam that was detected using conventional spectral analysis was a 

decrease of alpha activity and an increase of delta and theta activity when compared with placebo 

(Fig. 2, insertions), at a first sight suggesting that this effect corresponds to the entire EEG being 

analyzed (~100% effect). However, this does not imply that this total power spectrum 

characterizes each of the individual power-spectra for each EEG segment. In fact, and as explored 

in our early work (Fingelkurts et al., 2003) and in the present one, this is not the case.  

In order to estimate whether the averaged power spectrum characterized the whole of a 

given EEG/MEG, elemental calculations were performed. The total amount (in %) of EEG 

segments with “pure” delta, theta and alpha activity under lorazepam condition was calculated 

separately (for the occipital, central and frontal channels) using figure 2 (Fig. 6,A). The 

summation of the percents of SPs of “pure” delta, theta and alpha activity reflects only the (share) 

amount of 48-52% of EEG signal (for the different channels) and this relatively small share 

account for the averaged power spectrum of the whole signal. Hence, an as large share of EEG 

activity is “invisible” to the averaged power spectrum in conventional spectral analysis: [100% - 

(48-52%)]. Dominant spectral components determine the total picture of averaged EEG spectrum 

only due to their energetic predominance. 

The comparison of averaged power spectra for lorazepam and placebo “reveals” the effect 

of lorazepam. However, and for the same reason that the averaged power spectrum does not 

characterize the whole of the signal, the arithmetic difference (its sign or its modulus) between the 

averaged power spectra of lorazepam and placebo cannot characterize the individual parts of the 

signal. Similarly to the earlier reasoning, the effect of lorazepam can be precisely calculated by 

obtaining the difference of percentages of the individual SPs of lorazepam and placebo, also for 

the “pure” delta, theta and alpha activity (Fig. 6,B). 

The performed calculations showed that the amount of EEG affected by lorazepam which is 

visible for conventional spectral analysis ranges between 41% and 61% (for the different 

channels). This means that by using conventional spectral analysis we don’t know what happens 

in 39-59% (u) of EEG (for the different channels) in this study. It may be assumed that there is a 

portion of the signal which is not affected by lorazepam at all. The obtained results support this 

supposition (Fig. 6,B). Thus, 5-20% (v) (for the different channels) of EEG individual segments 
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contribution to the EEG classification profile during the lorazepam influence or with placebo was 

the same – lorazepam did not affect some set of SPs. By subtracting this amount from the portion 

of EEG which is invisible for conventional spectral analysis, it is possible to obtain the exact 

amount of the EEG (19-51% (u-v) for the different channels) which is still affected by lorazepam, 

but not visible for conventional spectral analysis (Fig. 6,B). These EEG segments are 

characterized by several rhythmical components from different frequency bands (Fig. 2). 
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Figure 6. Comparison of results of short-term spectral pattern analysis with the 
results of conventional spectral analysis. 
(A) Amount of EEG characterized by averaged power spectrum (in percent) for 
lorazepam, calculated from the values in figure 2 (see classification profile for 
lorazepam). (B) Amount of EEG affected by lorazepam (in percent), calculated 
from the values in figure 2 as summations of differences for each particular 
spectral pattern between lorazepam and placebo. 
L = lorazepam; P = placebo; SP = spectral pattern; SPi = spectral pattern of type i; 
SPLi = spectral pattern of type i for lorazepam; SPPi = spectral pattern of type i for 
placebo; L-P = arithmetic difference of percentages of spectral patterns between 
lorazepam and placebo; O2, C2, AF4 = EEG channels; arrows indicate the 
direction of changes.  
 

Neither the amount of EEG which is invisible for conventional spectral analysis (up to 59% 

of the total EEG), nor the portion of the signal which is not affected by lorazepam (up to 20% of 

the total EEG) and amount of the EEG which is characterized by several rhythmical components 

from different frequency bands and affected by lorazepam (up to 51%) can be detected by 

conventional spectral analysis in this study.  

Hence, conventional spectral analysis based on averaging procedures can account the 

lorazepam effect but only for 41-61% (for the different channels) of the currently studied EEG. 

Also, the averaged power spectrum characterized only 48-52% (for different channels) of the total 

signal. Up to 50% of the signal remains “invisible” for such approach (Fig. 6). The adaptive 

classification analysis of individual short-term spectral patterns suggested in the present paper 

permits the study of 100% of EEG/MEG transformations in detail.  

 

4. Discussion 

 

4.1. Methodological aspects 

 

Although pharmacological effects of benzodiazepines on brain dynamics have been widely 

studied, in most cases data has been averaged over extended periods of time and/or fixed 

frequency bands. Here we used adaptive classification analysis of short-term spectral patterns (see 

section 2.4. Data processing). This analysis revealed changes in the total amount of the time 

(percentage of EEG/MEG segments) that particular type of brain oscillations was on, rather than 

the changes in its amplitude or power.  
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Although EEG and MEG measures revealed very similar results, lorazepam effects in EEG 

were more pronounced than in MEG (Fig. 2). This difference is due to the different sensitivity of 

EEG and MEG. MEG is more sensitive to tangentially oriented cortical sources only, whereas 

EEG detects also radially oriented and deep sources (Hämäläinen et al., 1993).  

 

4.2. Main EEG/MEG effect induced by lorazepam 

 

We observed a significant decrease in the percentage of EEG/MEG segments with alpha 

activity and an increase in the percentage of EEG/MEG segments with delta and theta activity 

(Fig. 2), confirming the results of conventional spectral analysis and previous reports of 

lorazepam effects (Link et al., 1991; Entholzner, 1995). However, results of the present study 

substantially extended previously known data: lorazepam not only decreased power in alpha and 

increased power in delta and theta rhythms, but in fact, also decreased the number of EEG/MEG 

segments with fast-theta, delta-alpha, fast-theta–alpha and alpha activity, and increased the 

number of EEG/MEG segments with delta, delta–slow-theta, delta-beta, slow-theta and 

polyrhythmic activity when compared with placebo (Table 1). Moreover, using short-term spectral 

analysis it was demonstrated that lorazepam effect is typical for only 41-61% (for different 

channels) of a given EEG (Fig. 6), and averaged power spectrum characterized only 48-52% (for 

different channels) of a total signal.  

In contrast to the previous data, the results of this study demonstrated the interactive nature 

of multiple brain oscillations and changes in microstructural organization of EEG/MEG during 

lorazepam administration. The interactive nature of multiple brain oscillations is in line with T.H. 

Bullock work (Bullock, 1997), where he reported the lack of independence between widely 

different frequency components from 0.5-30 Hz frequency range. Cellular mechanism for 

explanation of how can different types of oscillations coexist in the same network was suggested 

(Destexhe, 2000). By changing the resting level of thalamic neurons, the same thalamocortical 

circuits would be capable of generating low-frequency oscillations, as well as fast oscillations. 

The model also predicts that the kinetics of GABA inhibitory postsynaptic potentials as well as 

the intrinsic properties of reticular cells are critical in determining the frequency of oscillations 

(Destexhe et al., 1993). Thus, intrinsic neuronal mechanisms would dominate for generating the 

slow waves (0.5-4 Hz), whereas synaptic interactions with cortical and the thalamic reticular 
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nucleus would be required for faster oscillations in the frequency range 7-14 Hz. (Lytton et al., 

1996). From this model it is clear why lorazepam affects oscillations in both frequency ranges. 

Additionally, GABAA receptor mediated inhibition has different roles in the network dependent 

on the target neuron. Inhibiting principal cells will thus reduce network excitability, whilst 

inhibiting interneurons will increase network excitability (Semyanov, 2003).  

Since the main effects described in the present paper have been observed in the majority (> 

65%) of EEG/MEG locations it may be suggested that distributed neuronal networks were 

affected by lorazepam. This supposition is supported by the work of Volkow with coworkers 

(Volkow et al., 1995) where it was shown that lorazepam significantly decreased whole brain and 

regional brain metabolism. Distributed EEG/MEG effects and metabolic response to lorazepam 

could reflect the result of the interaction with heterogeneously distributed benzodiazepine receptor 

subtypes in brain (Montpied et al., 1988; Semyanov, 2003). Strong metabolic changes with 

lorazepam in thalamus (Volkow et al., 1995) may also contribute to distributed EEG/MEG effects 

of lorazepam through widespread influences on the activity of the cerebral cortex (Carpenter and 

Sutin 1983). The influence of reference scheme which was used in this study may be ruled out, 

since MEG data which is strictly reference-free demonstrated the same result as EEG data. 

Moreover, the occipital and frontal regions clearly revealed differently pronounced lorazepam 

effect in EEG/MEG (Fig. 2).  

The strength of lorazepam effect can be estimated by the percent-share of the whole signal 

which was not affected by the drug: the lower this percentage, the stronger the effect of 

lorazepam. Thus, the strongest effect of lorazepam was observed in posterior part of the head (Fig. 

6). This finding is supported by the work of Volkow et al. (1995) where they demonstrated that 

the largest metabolic changes with lorazepam were in the occipital cortex. The occipital cortex is 

characterized by a high density of various benzodiazepine receptors subtypes (Inoue et al., 1992), 

which may explain their high sensitivity to the actions of benzodiazepine agonists.  

 

4.3. Functional significance of different brain oscillations  

 

Brain oscillations within theta band.  

Lorazepam has a general sedative effect (Pohlman et al., 1994; Swart et al., 1999); and 

present EEG/MEG changes are in line with reported EEG changes during sedation (Entholzner et 
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al., 1995; Crippen, 1997). In accordance with general neurophysiological notions, observed 

EEG/MEG deceleration must be a reflection of certain inhibitory processes (Lazarev, 1998).  

What is the mechanism of EEG/MEG slowing under the influence of lorazepam? Like other 

benzodiazepines, lorazepam facilitates GABAA neurotransmission in the brain (Korpi et al., 

2002). GABAA interneurons contain two separate subclasses: GABAA,fast and GABAA,slow 

interneurons (Banks et al., 1998). GABAA,slow cells are distributed within the hippocampal 

formation that may contribute to the theta rhythm (White et al., 2000). Besides that, GABAergic 

inhibition plays a fundamental role in the timing of high-frequency oscillations (Whittington et al., 

1996), and thus lorazepam prolongs synaptic inhibition. This can decrease the characteristic 

frequency of oscillations, imposing slow, high-amplitude waves in the EEG. Decreases in the 

EEG spectral frequency accompany decrements in cognitive function during the induction of 

anesthesia (Rampil, 1998). Moreover, GABAA receptors have an apparent role in synchronization 

and desynchronization of thalamocortical circuitry that contribute to the pathogenesis of epilepsy 

(Wong and Snead, 2001). Therefore, EEG/MEG slowing during lorazepam may also reflect 

anesthetic (Kennedy and Longnecker, 1996) and anticonvulsant (Alldredge et al., 2001) effects of 

this drug.  

Destexhe and co-workers proposed a cellular mechanism in which 2-4 Hz oscillations 

(dominant inhibitory effect) invade the entire network through a mutual interaction between 

cortex and thalamus (thalamocortical loops) (Destexhe, et al., 1998; Destexhe, 2000). The model 

suggests that corticothalamic feedback must operate on the thalamus mainly through excitation of 

GABAergic thalamic reticular neurons, therefore recruiting relay cells essentially through 

inhibition and rebound (also see Blumenfeld and McCormik, 2000). It seems that lorazepam 

affects thalamocortical loops by activating GABAergic thalamic reticular neurons. 

EEG/MEG slowing during lorazepam cannot be attributed to drowsiness at present study. 

Drowsiness is characterized by the presence of sleep spindles in EEG (Rechtschaffen and Kales, 

1968). Neither visual analysis, nor spectral analysis (Table 1) of subjects’ EEG and MEG during 

lorazepam revealed the increase of sleep spindles. Moreover, in contrary to sleep-inducing drugs 

such as zolpidem and midazolam (Durka and Blinowska, 2001; Durka et al., 2002), lorazepam did 

not increase the number of EEG/MEG segments with 12-15 Hz and did not decrease the number 

of EEG/MEG segments with 1-2 Hz in the present study (Table 1). 
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At the same time, the larger percentage of EEG/MEG segments with fast-theta for placebo 

when compared with lorazepam (in the present study) may relate to mechanisms of arousal 

(Mizuki, 1987).  

 

Brain oscillations within alpha band.  

Alpha waves from 8 to 13 Hz are the primary waveforms seen in awake subjects. In 

addition to confirming that alpha amplitudes are very sensitive to benzodiazepines (Koopmans et 

al., 1988; Van Steveninck et al., 1993), the present results extend this information: 

benzodiazepines not only decrease the amplitude of alpha rhythm but also reduce the total time 

when the brain generates this activity. Alpha waves respond readily to the changes in the brain’s 

functional state, decreasing with tranquility (Crippen, 1997). Therefore, the decrease in the 

number of EEG/MEG segments with “pure” alpha activity and EEG/MEG segments with alpha 

components during lorazepam may reflect tranquility effect of this drug.  

A decrease in global cerebral glucose metabolism by lorazepam (detected by positron 

emission-tomography) was reported by Volkow et al. (1993, 1995). Also, a decrease of EEG alpha 

power by lorazepam was significantly correlated with decreased glucose metabolism in the 

thalamus (Lange-Asschenfeldt et al., 2001). These findings suggest that alpha effects observed in 

the present paper may be caused by reduced brain metabolism.  

 

Brain oscillations within beta band.  

Increases in the EEG-beta amplitudes usually are used to quantify the effects of 

benzodiazepines (Greenblatt et al., 1989; Breimer et al., 1990; Mandema et al., 1992; Van 

Steveninck et al., 1993). However, in contrary to these reports, no increase of beta activity by 

lorazepam was observed in the present study. It was suggested and demonstrated here that 

changes in the beta frequency band (increase by lorazepam) that are present in averaged spectrum, 

most likely originated from averaged polyrhythmic activity, which is observed during lorazepam 

in a significantly more percentage than during placebo. This suggests that lorazepam does not 

increase activity of independent beta rhythm.  

Mathematical modeling of natural network dynamics for inhibition-based rhythms also 

suggests that increased beta activity elicited by benzodiazepines cannot be observed in a natural 

network (Whittington et al., 2000). Thus, in the absence of drugs (normal condition), gamma 
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activity is manifest as a train of outward synaptic currents (IPSCs) mediated by GABAA receptor 

activation. Benzodiazepines increase the amplitude of each IPSC with comparably little effect on 

decay kinetics. The resulting frequency of the IPSC train is approximately halved. In the case of 

potentiated IPSPs, beta oscillations are only seen in isolated interneuron networks. With strong 

recruitment of excitatory neurons (natural network), the frequency of oscillation remains within 

the gamma band (Faulkner et al., 1998). 

 

4.4. General characteristics and dynamical behavior of brain oscillations under the lorazepam 

influence 

 

Dynamical indices were more sensitive for lorazepam than direct spectral estimations 

(Table 2, Fig. 4). Thus, subject S8, who had opposite to the group effect according to direct 

spectral estimations, had similar dynamical indices with the group. It was shown here that 

lorazepam caused decreased diversity (in terms of spectral patterns) of EEG/MEG signal and 

increase general instability of CP. Accounting for anesthetic effect of benzodiazepines (Kennedy 

and Longnecker, 1996), these results are consistent with the previous finding (McEwen and 

Anderson, 1975) that EEG activity during anesthesia is significantly less stationary than baseline 

activity. 

A single EEG/MEG spectrum illustrates the particular integral dynamics of tens and 

hundreds of thousands of neurons in a given cortical region at a particular time period 

(Dumermuth and Molinari, 1987). Therefore, the absence of variance of a single spectrum during 

several consecutive analyzed epochs indicates that in a given cortical region the same macro-

regimen of neuronal pool activity is maintained during that period. This phenomenon of a 

temporal stabilization may be explained by stabilizing oscillatory patterns in the brain. Thus, EEG 

during lorazepam (eyes closed and open conditions) was characterized by longer periods of SP 

temporal stabilization than during placebo.  

At the same time, in the present study the eyes-open condition “preferred” shorter periods 

of SP temporal stabilization than the eyes-closed condition (Fig. 4). Increased stabilization periods 

of SPs by lorazepam and eyes-closed condition suggest a reduction of brain information 

processing (Fingelkurts et al., 2003). Additionally we found that concrete parameters in the 

lifetime of each of the SP type are specifically related to the influence of lorazepam (Fig. 5).  
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Note that all these estimations differed significantly in the “random EEG” (EEG whose 

natural sequence of SP type has been completely removed in each individual channel), which 

reflect that the temporary stabilization of the main dynamic parameters of neuronal activity being 

non-occasional character (Fig. 4, 5).  

It is therefore likely that the temporal variability/stability of EEG/MEG SPs provides 

additional information when characterizing lorazepam effects on CNS in terms of EEG/MEG 

correlates. Thus, suggested approach for EEG/MEG analysis that encompass interactive and 

dynamic nature of multiple brain oscillations can give a broader picture of drug effects in 

comparison to conventional methods and may be used as a complementary approach to classical 

spectral analysis. The usage of suggested approach may help to develop a more rational 

neuropsychopharmacology.  

 

5. Conclusions 

 

Results of the present paper not only supported previously obtained conclusions, but also 

revealed new aspects of lorazepam effects:  

(a) Complex interplay of brain oscillations during lorazepam administration was observed. 

This interplay of brain oscillations presumably reflects the complex multidimensional 

neurodynamic structure of brain activity under lorazepam influence which is formed by certain 

balance of independent neurophysiological processes. (b) The lorazepam effect measured by EEG 

and MEG was very similar and was observed in more than 65% of EEG/MEG locations. (c) At the 

same time, known lorazepam effect was typical for only 40-60% (for different channels) of a 

given EEG. (d) Lorazepam administration significantly reorganized the microstructure of 

EEG/MEG signal. This suggests that temporal EEG/MEG characteristics may provide additional 

information on drug effects. (e) Lorazepam increased stabilization periods of the spectral patterns 

reflecting a reduction of brain information processing. (f) Lorazepam caused no increase power in 

the independent beta rhythm.  

Suggested approach, which permits a detailed description of brain oscillations including 

temporal and dynamic changes of brain activity, improves on the sensitivity of the conventionally 

used spectral estimates and opens new possibilities for researchers. Sensitivity of the approach 

becomes obvious in the three following cases:  
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(1) Apart from the higher sensitivity, a detailed description of SPs dynamics allows for a 

closer investigation of the causes of changes in the averaged power estimates. For example, we 

observe from the numerical values given in Figure 3, that the change of total power in beta range 

(averaged spectrum) after lorazepam administration results from a change in the number of 

polyrhythmic SPs occurrences per minute rather than change of the average beta amplitude. 

(2) The EEG/MEG recordings of the subject S8 had opposite to the group effect according 

to direct spectral estimations under the influence of lorazepam (Fig. 2). Selective dynamical 

indices revealed the expected lorazepam effect, coherent with all the other subjects (Fig. 4, Table 

2). 

(3) In contrast to the conventional spectral analysis it is possible to estimate exact portion of 

EEG/MEG signal which is affected by the drug.  

All these phenomena would be very difficult to detect using the conventional approach. 

 

Acknowledgements 

The authors wish to thank Mr. Carlos Neves and V.A. Ermolaev, Dipl. Med. Eng., for 

software development and technical support. This work has been funded by the Academy of 

Finland, and by the Helsinki University Central Hospital Research Funds.  

 

References 
 
Alldredge BK, Gelb AM, Isaacs SM, Corry MD, Allen F, Ulrich S, Gottwald MD, O'Neil N, 

Neuhaus JM, Segal MR, Lowenstein DH. A comparison of lorazepam, diazepam, and 
placebo for the treatment of out-of-hospital status epilepticus. N Engl J Med 2001;345:631-
637. 

Banks MI, Li TB, Pearce RA. The synaptic basis of GABAA,slow. J Neurosci 1998;18:1305–1317. 
Barlow JS. Methods of analysis of nonstationary EEGs, with emphasis on segmentation 

techniques: a comparative review. J Clin Neurophysiol 1985;2:267-304. 
Bertrand O, Perrin F, Pernier J. A theoretical justification of the average reference in topographic 

evoked potential studies. Electroencephalogr Clin Neurophysiol 1985;62:462–464. 
Blumenfeld H, David A, McCormick DA. Corticothalamic inputs control the pattern of activity 

generated in thalamocortical networks. The J Neurosci 2000;20:5153–5162. 
Breimer LTM, Hennis PJ, Burm AGL, Danhof M, Bovill JG, Spierdijk J, Vletters AA. 

Quantification of the EEG effect of midazolam by aperiodic analysis in volunteers. Clin 
Pharmacokinet 1990;18:245-253. 

Bullock TH. Signals and signs in the nervous system: The dynamic anatomy of electrical activity. 
Proc National Academy of Sciences 1997;94:1-6. 



32 
 

Carpenter MB, Sutin J. The diencephalons. In Human Neuroanatomy. Baltimore, Williams and 
Wilkins, 1983; pp 493-551.  

Chung G, Tucker DM, West P, Potts GF, Liotti M, Luu P, Hartry AL. Emotional expectancy: 
Brain electrical activity associated with an emotional bias in interpreting life events. 
Psychophysiology 1996;33:218–233. 

Crippen DW. Using Bedside EEGs to Monitor Sedation During Neuromuscular Blockade. J Crit 
Illness 1997;12:519-524. 

Derogatis LR, Lipman RS, Covi L. SCL-90: an outpatient psychiatric rating scale - preliminary 
report. Psychopharmacol 1973;9:13-28. 

Destexhe A, McCormick DA, Sejnowski TJ. A model for 8-10 Hz spindling in interconnected 
thalamic relay and reticularis neurons. Biophys J 1993;65:2473-7. 

Destexhe A, Contreras D, Steriade M. Mechanisms underlying the synchronizing action of 
corticothalamic feedback through inhibition of thalamic relay cells. J Neurophysiol 
1998;79:999–1016. 

Destexhe A. Modelling corticothalamic feedback and the gating of the thalamus by the cerebral 
cortex. J Physiol (Paris) 2000;94:391–410. 

Duffy F, Hughes JR, Miranda F, Bernard P, Cook P. Status of quantitative EEG (QEEG) in 
clinical practice. Clin Electroencephalogr 1994;25:VI-XXII. 

Dumermuth HG, Molinari L. Spectral analysis of the EEG. Some fundamentals revisited and 
some open problems. Neuropsychobiol 1987;17:85-99. 

Durka PJ, Blinowska KJ. A unified parametrization of EEG. IEEE Engineering in Medicine and 
Biology Magazine 2001;20(5):47-53. 

Durka PJ, Szelenberger W, Blinowska KJ, Androsiuk W, Myszka M. Adaptive time-frequency 
parametrization in pharmaco EEG. J Neurosci Methods 2002;117(1):65-71. 

Effern A, Lehnertz K, Fernandez G, Grunwald T, David P, Elger CE. Single trial analysis of event 
related potentials: non-linear de-noising with wavelets. Clin Neurophysiol 2000;111:2255-
2263. 

Entholzner E, Mielke L, Pichlmeier R, Weber F, Schneck H. EEG changes during sedation with 
gamma-hydroxybutyric acid. Anaesthesist 1995;44:345-350. 

Faulkner HJ, Traub RD, Whittington MA. Disruption of synchronous gamma oscillations in the 
rat hippocampal slice: A common mechanism of anesthetic drug action. Brit J Pharmacol 
1998;125:483-492. 

Fingelkurts AlA, Fingelkurts AnA, Grin’ Eyu, Ermolaev VA, Kaplan Aya. Adaptive classification 
of EEG spectral patterns: the comparison between healthy subjects and patients with different 
brain pathology. Vestnik Moskovskogo Universiteta (Bulletin of Moscow University). Series 
Biology 2000;4:3-11 (in Russian). 

Fingelkurts AnA, and Fingelkurts AlA. Operational Architectonics of the Human Brain 
Biopotential Field: Towards Solving the Mind-Brain Problem. Brain and Mind 2001;2:261-
296. 

Fingelkurts AlA, Fingelkurts AnA, Krause CM, Sams M. Probability interrelations between pre-
/post-stimulus intervals and ERD/ERS during a memory task. Clin Neurophysiol 
2002;113:826–843. 

Fingelkurts AlA, Fingelkurts AnA, Kaplan AYa. The regularities of the discrete nature of multi-
variability of EEG spectral patterns. Int J Psychophysiol 2003;47(1):23-41. 



33 
 

Greenblatt DJ, Ehrenberg BL, Gunderman J, Locniskar A, Scavone JM, Harmatz JS, Shader RI. 
Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, 
and placebo. Clin Pharmacol Ther 1989;45:356-365. 

Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV. Magnetoencephalography – 
theory, instrumentation, and application to noninvasive studies of the working human brain. 
Rev Mod Phys 1993;65:413-498.  

Hjorth B. Source derivation simplifies topographical EEG interpretation. American Journal of 
EEG Technology 1980;20:121–132. 

Hilfiker P, Egli M. Detection and evolution of rhythmic components in ictal EEG using short 
segment spectra and discriminant analysis Electroenceph Clin Neurophysiol 1992;82:255-65. 

Holi MM, Sammanlahti PR, Aalberg VA. Finnish validation study of the SCL-90. Acta Psychiatr 
Scand 1998;97:42-46. 

Inoue O, Suhara T, Itoh T, Kobayashi K, Susuki K, Tateno Y. In vivo binding of [11C]Ro15-4513 
in human brain measured with PET. Neurosci Lett 1992;145:133-136. 

 Inouye T, Toi S, Matsumoto Y. A new segmentation method of electroencephalograms by use of 
Akaike’s information criterion. Brain Res Cogn Brain Res 1995;3:33-40. 

Jansen BH. Quantitative analysis of the electroencephalograms is there chaos in the future. Int J 
Biomed Comput 1991;27:95-123. 

Jansen BH, Cheng Wei-Kang.  Structural EEG analysis: an explorative study. Int J Biomed 
Comput 1988;23:221-237.  

Junghöfer M, Elbert T, Tucker DM, Braun C. The polar average reference effect: A bias in 
estimating the head surface integral in EEG recording. Clin Neurophysiol 1999;110:1149–
1155. 

Kaplan AYa, Kochetova AG, Nezavibathko VN, Kamensky AA, Ashmarin IP. Synthethic  ACTH  
analogue  SEMAX  effects  on  EEG and vigilance performance in human subjects. Neurosci 
Res Communication 1996;19:115-123. 

Kaplan Aya. Nonstationary EEG: methodological and experimental analysis. Uspehi 
Physiologicheskih Nayk (Success in Physiological Sciences) 1998;29:35-55 (in Russian). 

Kaplan AYa, Fingelkurts AlA, Fingelkurts AnA, Grin’ EU, Ermolaev VA. Adaptive classification 
of dynamic spectral patterns of human EEG. Journal VND (Journal of Higher Nerve 
Activity) 1999;49:416-426 (in Russian). 

Kaplan AYa, Shishkin SL. Application of the change-point analysis to the investigation of the 
brain’s electrical activity. In: Brodsky BE, Darhovsky BS, editors. Non-Parametric Statistical 
Diagnosis. Problems and Methods, Dordrecht: Kluwer Acad. Publ. 2000. pp. 333-388. 

Kennedy SK and Longnecker DE. History and Principles of Anesthesiology. In: Hardman JG, 
Limbird LE, Molinoff PB, Ruddon RW, and Gilman AG, editors. The Pharmacological Basis 
of Therapeutics, The McGraw-Hill Companies, Inc. 1996: p. 324. 

Koelega HS. Benzodiazepines and vigilance performance: a review. Psychopharmacol (Berlin) 
1989;98:145-156. 

Koopmans R, Dingemanse J, Danhof M, Horsten GP, van Boxtel CJ. Pharmacokinetic-
pharmacodynamic modeling of midazolam effects on the human central nervous system. Clin 
Pharmacol Ther 1988;44:14-22. 

Korpi ER, Gründer G, Lüddens H. Drug interactions at GABAA receptors. Progress in Neurobiol 
2002;67:113-159. 

Lange-Asschenfeldt C, Siessmeier T, Schreckenberger M, Buchholz HG, Mann K, Hiemke C, 
Rösch F, Bartenstein P, Gründer G. Lorazepam-induced decrease in EEG alpha-power 



34 
 

correlates with decrease in thalamic glucose metabolism: an [18F] FDG PET study in normal 
volunteers. Pharmacopsychiatry, Abstracts of the 22nd Symposium of AGNP, Nuremberg, 
2001;119. 

Laskaris NA, Ioannides AA. Exploratory data analysis of evoked response single trials based on 
minimal spanning tree. Clin Neurophysiol 2001;112:698-712. 

Lazarev VV. On the intercorrelation of some frequency and amplitude parameters of the human 
EEG and its functional significance. Communication I: Multidimensional neurodynamic 
organization of functional states of the brain during intellectual, perceptive and motor 
activity in normal subjects. Int J Psychophysiol 1998;28:77-98. 

Link CG, Leigh TJ, Fell GL. Effects of granisetron and lorazepam, alone and in combination, on 
the EEG of human volunteers. Br J Clin Pharmacol 1991;31:93-7. 

Lytton WW, Destexhe A, Sejnowski TJ. Control of slow oscillations in the thalamocortical 
neuron: a computer model. Neuroscience 1996;70:673-84.  

MacGillivray BB, Sawyers FJP. A comparison of common reference, average and source 
derivations in mapping. In D. Samson-Dollfus (Ed.), Statistics and topography in quantitative 
EEG. Paris: Elsevier 1988, pp. 72–87. 

Mandema JW, Kuck MT, Danhof M. Differences in intrinsic efficacy of benzodiazepines are 
reflected in their concentration-EEG effect relationship. Br J Pharmacol 1992;105:162-170. 

Manuca R, Savit R. Stationarity and nonstationarity in time series analysis. Physica D 
1996;99:134-161.  

McEwen JA, Anderson GB. Modeling the stationarity and gaussianity of spontaneous 
electroencephalographic activity. IEEE Trans Biomed Engin 1975;22(5):361-369. 

Mizuki Y. Frontal Lobe: Mental Function and EEG. Am J EEG Technol 1987;27:91-101. 
Montpied P, Martin BM, Cottinham SL, Stubblefield BK, Ginns E, Paul SM. Regional 

distribution of the CABAA/benzodiazepine receptor (a subunit) mRNA in rat brain. J 
Neurochem 1988;51:1651-1654. 

Oken BS, Chiappa KH. Short-term variability in EEG frequency analysis. Electroencephalogr 
Clin Neurophysiol 1988;69:191-198. 

Pohlman AS, Simpson KP, Hall JB. Continuous intravenous infusions of lorazepam versus 
midazolam for sedation during mechanical ventilatory support: a prospective, randomized 
study.  Critical Care Medicine 1994;22:1241-1247. 

Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998;89:980-1002. 
Rechtschaffen A, Kales A. A manual of standardized terminology, techniques and scoring system 

for sleep stages in human subjects. Number 204 in National Institutes of Health Publications. 
US Government Printing Office, Washington DC 1968. 

Salmelin R, Hari R. Characterization of spontaneous MEG rhythms in healthy adults. 
Electroencephalogr clin Neurophysiol 1994;91:237-248. 

Schallek W, Schlosser W. Neuropharmacology of sedatives and anxiolytics. Mod Probl 
Pharmacopsychiatry 1979;14:157-73. 

Semyanov A. Cell type specificity of GABAA receptor mediated signaling in the hippocampus. 
Current Drug Targets 2003;2:240-248.  

Srinivasan R, Tucker DM, Murias M. Estimating the spatial Nyquist of the human EEG. 
Behavioral Research Methods, Instruments, and Computers 1998;30:8–19. 

Swart EL, Strack vanSchijindel RJM. Continuous infusion of lorazepam versus midazolam in 
patients in the intensive care unit: sedation with lorazepam is easier to mange and is more 
cost effective. Critical Care Medicine 1999;27:1461-1465. 



35 
 

Tirsch WS, Keidel M, Perz S, Scherb H, Sommer G. Inverse covariation of spectral density and 
correlation dimension in cyclic EEG dynamics of the human brain. Biol Cybern 2000;82:1-
14. 

Thatcher RW. Normative EEG databases and EEG biofeedback. J Neurotherapy 2001;(2-4)3:1-
29. 

van Steveninck AL, Mandema JW, Tuk BJ, van Dijk G, Schoemaker RC, Danhof M, Cohen AF. 
A comparison of the concentration-effect relationships of midazolam for EEG-derived 
parameters and saccadic peak velocity. Br J clin Pharmac 1993;36:109-115. 

Volkow N, Wang G, Hitzemann R, Fowler J, Wolf A, Pappas N, Biegon A, and Dewey S. 
Decreased cerebral response to inhibitory neurotransmission in alcoholics. Am J Psychiatry 
Research 1993;150:417-22. 

Volkow N, Wang G, Hitzemann R, Fowler J, Pappas N, Lowrimore P, Burr G, Pascani K, Overall 
J, Wolf A. Depression of thalamic metabolism by lorazepam is associated with sleepness. 
Neuropsychopharmacology 1995;12:123-132. 

Virtanen J, Rinne T, Ilmoniemi RJ, and Näätänen R. MEG-compatible multichannel EEG 
electrode array. Electroencephalogr clin Neurophysiol 1996;99:568-570. 

Virtanen J, Parkkonen L, Ilmoniemi RJ, Pekkonen E, and Näätänen R. Biopotential amplifier for 
simultaneous operation with biomagnetic instruments. Med Biol Engin Com 1997;35:402-
408. 

White JA, Banks MI, Pearce RA, Kopell NJ. Networks of interneurons with fast and slow g-
aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta 
rhythm. PNAS 2000;97:8128-8133. 

Whittington MA, Jefferys JG, Traub RD. Effects of intravenous anesthetic agents on fast 
inhibitory oscillations in the rat hippocampus in vitro. Br J Pharmacol 1996;118:1977-1986. 

Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH. Inhibition-based rhythms: 
Experimental and mathematical observations on network dynamics. Int J Psychophysiol 
2000;38: 315-336. 

Wong GC, Snead CO. The GABAA receptor: subunit-dependent function and absence seizures. 
Epilepsy Currents 2001;1:1-5. 

Zygierewicz J, Blinowska KJ, Durka PJ, Szelenberger W, Niemcewicz Sz, Androsiuk W. High 
resolution study of sleep spindles. Clin Neurophysiol 1999;110:2136-2147.  


