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Abstract 
 
Revealing the functional meaning of EEG and MEG signals’ nonstationarity and metastability 
is one of the major topics in current brain research. Indeed, the explicit quasi-stationary 
phenomena in the activity of large neuronal populations are still largely unknown. However, 
the fast dynamics of quasi-stationary episodes in EEG/MEG signal, together with rapid 
transitive periods between them, fit to the time scale of our conscious experience on the one 
hand, and to the theory of coupled non-linear dynamical subsystems on the other hand. The 
global integrity of local quasi-stationary states of EEG/MEG signal is the other side of 
metastable brain dynamics. In the current review paper we present methodologies for studying 
the quasi-stationary composition of both local EEGs/MEGs and the inherent synchrony 
between quasi-stationary structures in pairs of EEG/MEG channels. To obtain quantitative 
characteristics of segmental organization and structural synchrony of multichannel EEG/MEG 
signal, the original algorithms and program tools have been used. Convincing results obtained 
for the experimental models and simulated data are presented and discussed in detail. A novel 
framework for the analysis of EEG/MEG time series that alternate between different operating 
modes is suggested.  
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1. Introduction 

“Its <EEG> full potential can now be utilized since recording 
technology and computational power for the large data masses 
has become affordable. However, basic traditional strategies in 
EEG need reviewing”. 
Lehmann D.  In: Psychophysiol. 1 (1984) 267-276.  

 

The search to understand how human beings create intentional behavior and how the 

mental world emerges within the human brain on the basis of neuronal activity, inevitably 

leads researchers to study neuronal nets co-operation. The neuron doctrine in its classical 

mode has served well as the theoretical basis for the great advances in the current 

understanding of how the human brain works [58]. However, the behavior of many billions of 

neurons organized in the noisy networks cannot be explained using only the knowledge of its 

basic properties obtained from that neuronal microscopic level [53,1]. As a consequence, a 

global brain dynamics emerged at the large-scale level from the cooperative interactions 

among widely distributed, densely interconnected and continuously active neurons has been 

postulated ([9,16] just to mention a few).  

Here the principal question arises, however: what are the mechanisms in the human brain 

that underlie functional cooperation of such large-scale and continuously changing neural 

populations, consisting of billions of neurons? Modern theoretical and experimental work 

suggests that the assemblies of coupled and synchronously active neurons represent the most 

plausible candidates for the understanding of brain dynamics [6,31,48]. The majority of the 

neuronal assemblies are non-linear excitable systems. Thus, it becomes common to apply 

principles derived from non-linear dynamics to characterize these neuronal systems [31,64]. 

One of the fundamental predictions from this framework is that self-organization depends on 

the appearance of sudden, macroscopic transitions between relatively stable states of a 

complex system [31,63]. Therefore, the presence of transitions between metastable patterns of 

brain activity [39] could be considered as the basic operational architecture of the brain and 

also as a manifestation of the dynamic repertoire of the brain functional states [39,32,40,9,23]. 

The most explicit example of the cooperated neuronal activity is the well-known EEG/MEG 

oscillations [47,54,4].  

From the early electrophysiological studies, it has been shown that large-scale patterns of 

synchronized neuronal activity (or EEG/MEG) are ever changing and thus exhibit a 

considerable variability over time. Therefore, until now, analysis of the EEG/MEG signal has 

been based mainly on statistical data processing in order to obtain the stable and reliable 
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characteristics. The key assumption underlying such statistical analyses is the “stationarity” of 

the registered signal. Usually, manifestations of nonstationarity in the real EEG/MEG signal 

are either carefully eliminated, or are considered as an unavoidable “noise” in the system. To 

minimize this so-called “noise”, various procedures of smoothing and averaging are applied to 

the data. Even though these approaches have revealed many important characteristics of the 

signal (for example, the functional significance of different EEG/MEG frequency bands; 

[4,47]), the initially high time-resolution of the signal is usually lost under such conditions. In 

the meantime, it is obvious that regardless of how powerful or statistically significant the 

different estimations of averaged EEG/MEG characteristics may be, there might be difficulties 

in arriving at a meaningful interpretation of these if they are not matched to their inherent 

piecewise stationary structure [18,49,26]. 

It now appears that the practice of analyzing EEG/MEG signals based on the assumption 

of stationarity and using the "timeless" methods is coming to an end, slowly being superceded 

by a new paradigm based on the opposite assumption: that the brain activity is essentially 

nonstationary [40]. Here another important question arises: does this mean that neuroscientists 

should employ the phenomenon of “nonstationarity” in a quest for new clues about the brain 

functioning? Based on our research, we believe that the basic source of the observed 

nonstationarity in EEG/MEG signal is not due to the casual influences of the external stimuli 

on the brain mechanisms, but rather it is a reflection of switching of the inherent metastable 

states of neural assemblies during brain functioning. At the EEG/MEG level the moments of 

switching are reflected in a sequence of abrupt transitive processes which make up the 

EEG/MEG segments [41,21]. In this case, the time dynamics of such switching can be 

considered as a kind of “leitmotiv” which determines the coordinated participation of many 

neural ensembles in harmonious brain activity (for the reviews, see [40,21-23]. 

The issue of segmental description of brain activity has been addressed by several 

researchers (see review [3]); however, the most successful attempt was made by analyzing and 

comparing the spatial configurations of the momentary electric brain field. Thus, it has been 

shown that an EEG consists of sub-second duration epochs with a stable spatial configuration 

(microstates) lasting about 100-200 ms and separated by rapid topographical changes [51]. 

However, because this segmental methodology is based on momentary brain electric field 

configurations, it does not provide information about frequency domain. In such a case the 

relationship between microstates and frequency oscillations remains unclear. Another 

drawback of this method concerns the involvement of different cortical areas: even though a 

spatial segmentation of multichannel EEG/MEG is a very important approach for studying the 
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quasi-stationary structure of brain activity, it is, however, lacking of the time-dimensional 

information in each cortical area separately. A crucial step to overcome these limitations is an 

approach firstly suggested by Bodenstain and Praetorius [57]. They suggested to segment the 

individual EEG channel by means of autoregression modeling. Several other segmentation 

techniques for the individual EEG/MEG channels have also been used intensively ([3,38] just 

to mention a few), mainly utilizing parametric approaches. However, all parametrical 

approaches are initially “defective” because they have inherent limitations when applied to the 

analysis of EEG/MEG signal; the most significant one is the absence of a universal EEG (or 

MEG) mathematical model (for a detail discussion, see [44]).   

To overcome the limitations of these methods, we have introduced the nonparametric 

approach for EEG segmentation which does not use any analytical models, but rather searches 

(based only on statistical evaluation) for the switching between quasi-stationary segments in 

the EEG/MEG signal [10,41]. In the current version (SECTION 01®), this technology enables 

the characterization of each channel in multichannel EEG/MEG as a set/sequence of segments 

with certain attributes [42]. However, the knowledge about the dynamic metastability of brain 

activity would be incomplete without studying the spatial distribution of EEG/MEG segments 

along the cortex. To assess the spatial domain, a methodology to estimate a new kind of 

synchrony in the multichannel EEG/MEG signal (called structural synchrony) has been 

developed (JUMPSYN 01® algorithm). The Structural Synchrony Index measures the 

coincidence level between the switching moments (boundaries between segments) between 

different EEG/MEG channels [43]. A detailed description of the current versions of both 

technologies is presented below in this paper. 

The aim of the present review paper is therefore multifold: (1) To present and observe the 

new, integrated methodological approaches for detecting quasi-stationary EEG/MEG 

segments and their synchrony between different EEG/MEG locations; (2) To observe the 

modeling and experimental data; and (3) To undertake a conceptual analysis of data in the 

framework of metastable concept of brain dynamics ([39]; for the recent review, see [9,23]).  

 

 

2. Methods 

 

2.1. Nonparametric adaptive level segmentation of EEG/MEG 

Before describing the main steps of this approach, we explain how changes in 

probabilistic characteristics in the EEG/MEG can be formally defined. It has been assumed 
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that an observed piecewise stationary process like EEG/MEG is “glued” from several quasi-

stationary processes [10,19]. Thus, the task is to divide the signal into quasi-stationary 

segments by estimating these points of “gluing”. These instants within short-time window, 

when the EEG/MEG amplitude is changed abruptly, are identified as rapid transition 

processes (RTP). RTP is supposed to be of minor length, and therefore can be treated as a 

point or near-point. It was proved that amplitude variability is indeed the main contributor to 

temporal modulation of the variance and power of the signal under investigation [68].  

The adaptive nonparametric EEG/MEG segmentation method (SECTION 01®, Human 

Brain Research Group, Moscow State University) was performed in two stages (Fig. 1 A). 

This method does not build any mathematical model of the signal with defined parameters and 

for the search of the stationary segments in the signal it compares the statistics of stochastic 

amplitude distributions before and after of preliminary RTP. The first stage was performed in 

two steps. During the first step, the native EEG/MEG values were converted into the absolute 

values (module), since only envelop of the signal is used in the following step (Hilbert 

transform can also be used to provide envelope estimates). Second step corresponds to the 

basic procedure of segmentation: The main idea is in comparison of the ongoing EEG/MEG 

amplitude absolute values averaged in the sliding test-window and in the sliding level-window 

(test window << level window). All amplitude values in the windows are weighted equally. 

The duration of windows is short (6-800 ms) and dependent on the analyzed frequency range 

and sampling rate of the signal; the shift of both windows is equal to one data-point. The use 

of short time windows is motivated by the need for tracking non-stationary transient cortical 

processes on a sub-second time scale. As a result of averaging in sliding test- and level-

windows, two new sequences (test – t and level – l) constructed from the initial one, and 

placed on the same time-scale (Fig. 1 A). The time-instants corresponding to the crossing of t- 

and l-time-series become the preliminary estimate of RTPs.  

To estimate the statistically significant RTPs the two conditions should meet (Fig. 1 B). 

First condition estimates the steepness of a change (Fig. 1 B, a): the EEG/MEG amplitude 

values are averaged at the t-time-series within n data-points before (M-n) and after (M+n) a 

preliminary RTP. If the result of subtraction (M+n – M-n) is statistically significant (the Student 

criteria, p < 0.05 with coefficient 0.3), then this first condition is accepted and second 

condition should be tested. Second condition (Fig. 1 B, b) must be fulfilled in order to 

eliminate possible “false alerts” associated with anomalous brief peaks in the EEG/MEG 

amplitude. Consecutive five points of the digitized EEG/MEG following this preliminary RTP 
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Figure 1. Nonparametric adaptive level segmentation of EEG/MEG (schematic 
presentation). A, stages of segmentation. On the horizontal axis the data-points of digitized 
signal is shown. On the vertical axis the amplitude of the signal is shown in µV2. Vertical 
dotted lines indicate the time coordinates of preliminary RTPs. B, two conditions for 
estimation the statistical significance of preliminary RTP (pRTP). Explanation in the text. 
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must have a statistically significant difference between averaged amplitude values in the t- and 

l- time-series (the Student criteria, p < 0.05 with coefficient 0.1). Only if these two criteria are 

met, the preliminary RTPs are assumed as actual. With this technique, the sequence of RTPs 

with statistically proven (p < 0.05, Student t-test) time coordinates has been determined for 

each EEG/MEG location individually for each 1-min epoch. By varying the parameters of this 

technique it is possible to obtain the segments corresponding to a more or less detailed 

structure of the EEG/MEG. Therefore, there are prospects for the description of the structural 

EEG/MEG organization as a hierarchy of segmental descriptions on different time scales [41].  

   After quasi-stationary segments (indexed by RTP) were obtained, several 

characteristics (attributes) of segments can be calculated (separately for each channel): 

1. Average amplitude (A) within each segment (µV2) – as generally agreed, indicates mainly 

the volume or size of neuronal population: indeed, the more neurons recruited into 

assembly through local synchronization of their activity, the higher will be the amplitude 

of corresponding to this assembly oscillations in the EEG/MEG [54]. 

2. Average length (L) of segments (ms) – illustrates the functional life span of neuronal 

population or the duration of operations produced by this population: since the transient 

neuronal assembly function during particular time interval, this period is reflected in 

EEG/MEG as a stabilized interval of the quasi-stationary activity [42].  

3. Coefficient of amplitude variability (V) within segments (%) – shows naturally the 

stability of local neuronal synchronization within neuronal population or assembly. 

4. Average amplitude relation (AR) among adjacent segments (%) – indicates the neuronal 

assembly behavior – growth (recruiting of new neurons) or distraction (functional 

elimination of neurons) [30]. 

5. Average steepness (S) among adjacent segments (estimated in the close area of RTP) (%) 

– reflects the speed of neuronal population growth or functional distraction [42].  

The comparison of the same segment attributes between different experimental 

conditions or functional states was performed using Wilcoxon matched pairs t-test.  

 

2.2. Calculation of the structural synchrony index  

The next step was to estimate the synchronization of rapid transition processes (RTP) in 

EEG/MEG among different cortical areas through the so-called index of EEG/MEG structural 

synchrony (ISS). Traditionally coherence and correlation has been the main methods to assess 

the degree of synchronization between brain signals [67]. It is interesting that initial idea, 
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advocating the correlation approaches as an attempt to quantitatively describe the relationship 

in the activity of cortical areas, has gradually transformed into the postulation of the presence 

of an “interrelation” between different sections of the brain only in the case of a high 

significance of crosscorrelation and coherency. However, in a strict sense, the coherence value 

indicates only the linear statistical link between EEG/MEG curves in a frequency band. 

Meanwhile, it is obvious that in general the absence of similar types of statistical relation 

between two processes does not mean the absence of any interaction between them at all (for 

critical discussion see [43,12]. John C. Show and David Simpson also stressed that one must 

be careful about interpreting coherence (and partial coherence) as an indicator of functional 

connectivity [60] and pointed out that EEG signals may show a finite correlation even when 

recorded from separate subjects [59]. Recently several new methods for detecting functional 

connectivity between cortical areas have been published: partial directed coherence [2], 

dynamic imaging of coherent sources [35], structural equation models for fMRI [34], and 

phase synchrony [66]. However, all these methods have several serious limitations (for a 

discussion, see [24]).  

The ISS index (JUMPSYN 01®, Human Brain Research Group, Moscow State 

University), overcome the disadvantages of conventional methods, and can reveal inherent 

functional interrelationships of cortical areas different from those measured by correlation, 

coherence and phase analysis (for a discussion, see [24]).  

The technology for ISS estimation was as follows. Each RTP in the reference EEG/MEG 

channel (the channel with the minimal number of RTPs from any pair of EEG/MEG channels) 

was surrounded by a short “window” (ms). It was taken that any RTP from another (test) 

EEG/MEG channel coincided if it fell within this window. Formally the ISS was computed as 

follows: 

ISS = mwindows – mresidual ,  

where  mwindows = 100 * 
w

w

sl
sn  ; mresidual = 100 * 

r

r

sl
sn ; snw – total number of RTPs in all windows 

(window for synchronization) in the test channel; slw – total length of EEG/MEG recording (in 

data points) inside all windows in the test channel; snr – total number of RTPs outside the 

windows (window for synchronization) in the test channel; slr – total length of EEG/MEG 

recording (in data points) outside the windows in the test channel.   

It is obvious, however, that even in the absence of any functional cortical interregional 

cooperation there should be a certain stochastic level of RTPs coupling, which would reflect 

merely occasional combinations. The values of such stochastic inter-area relations should be 
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uniform and substantially lower than in the actual presence of functional interrelation between 

areas of EEG/MEG channels. Thus, to arrive at a direct estimation of a 5% level of statistical 

significance of the ISS (p < 0.05), computer simulation of RTPs synchronization was 

undertaken based on random shuffling of time segments marked by RTPs (500 independent 

trials). These share the properties of the experimental data (number of RTPs in each 

EEG/MEG channel of analyzed pair, number of segments, and number of windows of 

synchronization), but the time coordinates of RTPs were altered randomly in each trial so as to 

destroy the natural temporal structure of the data. Justification for this approach can be found 

in [29]. However, other approaches are also possible (see for example [13]).  

As a result of 500 times repeated random reshuffling of the time segments marked by 

RTPs the stochastic level of RTPs coupling (ISSstoh), and the upper and lower thresholds of 

ISSstoh significance (5%) were calculated. These values represent an estimation of the 

maximum (by module) possible stochastic rate of RTPs coupling (confidence levels). Thus, 

only those values of ISS which exceeded the upper (active coupling) and lower (active 

decoupling) thresholds of ISSstoh have been assumed to be statistically valid (p < 0.05). Thus, 

the ISS tends towards zero where there is no synchronization between the EEG/MEG 

segments and has positive or negative values where such synchronization exists. Positive 

values indicate ‘active’ coupling of EEG/MEG segments (synchronization of EEG/MEG 

segments are observed significantly more often than expected by chance), whereas negative 

values mark ‘active’ decoupling of segments (synchronization of EEG/MEG segments are 

observed significantly less than expected by chance). From a qualitative perspective, the 

(de)coupling of EEG/MEG segments corresponds to the phenomenon of synchronization of 

brain operations or Operational Synchrony, OS (for review, see [21,22]).  

 

2.3. EEG/MEG registration 

All EEG recordings were performed in an electrically and magnetically shielded room in 

Human Brain Research Group, Moscow State University and in the BioMag Laboratory, 

Helsinki University Central Hospital. EEGs were recorded with 16- and 60-channel data 

acquisition systems with a frequency band of 0.03 to 30 Hz (sampling rate 128 Hz). Different 

montages were used (specified in the Results and Discussion section). The link ears-lobe 

electrodes were used as reference. The impedance of the recording electrodes was always 

below 5 kΩ. Vertical and horizontal electro-oculograms were recorded.  

MEG was recorded continuously in a magnetically shielded room with a 306-channel 

whole-head device in the Low Temperature Laboratory at the Helsinki University of 



 10

Technology (Neuromag Vectorview, Helsinki, Finland). The sensor elements of the device 

comprise two orthogonal planar gradiometers and one magnetometer. The data was digitized 

at 300 Hz. The passband filter of the MEG recordings was 0.06-100 Hz. Only subset of these 

306 channels was used (specified in the Results and Discussion section). 

EEG/MEG epochs containing artifacts due to eye blinks, significant muscle activity or 

movements were automatically rejected. The presence of an adequate signal was also 

determined by visually checking of the each raw signal on the computer screen after automatic 

artifact rejection. 

 

3. Results and discussion 

In the present work we examined the new methodological approaches for EEG/MEG 

signal analysis in several modeling experiments. We used native EEG/MEG signal as well as 

filtered in alpha (7–13 Hz) and beta (15–21 Hz) frequency bands, as well as surrogate 

EEG/MEG data. Using surrogate data we approached the relative rate of stochastic 

alternations (confidence levels) of our estimations in the actual EEG/MEG.  

 

3.1. Adaptive EEG segmentation 

This part of the work was focused on the analysis of the dynamics of functional neuronal 

assembles (or populations). Neuronal assembly usually is described as a group of neurons or 

neural masses for which correlated activity persists over substantial time intervals [54] and 

underlies basic operations of informational processing [42]. At the level of EEG (and MEG) 

these intervals should be reflected in the periods of quasi-stationary activity that operates in 

different frequency ranges (for the review see [21]). Such segments of quasi-stationarity were 

obtained using segmentation approach (see Methods section). Rapid transition processes 

(RTP) in EEG amplitude in such a way are, in fact, the markers of boundaries between quasi-

stationary segments. This approach focuses on the local processes in the cortex and thus 

permits assessing the mesolevel description of cortex interactions (interactions within transient 

neuronal assemblies) through large-scale estimates [30]. 

Figure 2 illustrates the typical example of automatic detection of RTPs in 16-channel 

spontaneous EEG recording filtering in the alpha frequency band (7–13 Hz).  As it seen from 

the figure, RTPs mark not only the periods of presence or absence of alpha-spindles, but also 

the phasic changes of it independently from the power of alpha rhythm.  
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Figure 2. Typical example of 16-channel spontaneous EEG record (filtered in alpha 
frequency band: 7-13 Hz) with automatically detected rapid transition processes (RTP). Figure 
modified from Fingelkurts and Fingelkurts, 2001 Brain and Mind. 
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The majority of quasi-stationary segments have had a duration less than 1 sec (Fig. 2). 

The same finding was obtained consistently in the number of experimental settings 

[43,61,62,27-30]. For each 1-minute EEG recording (n = 80, male healthy subjects, rest 

condition, closed eyes) about 200–270 segments for alpha activity and 240-280 segments for 

beta activity were found. However, the specific proportions of the duration and the number of 

stationary segments strongly vary between different cortical areas and depended on the stage 

of cognitive task (data not shown, see [43,28]). These findings suggest a functional 

significance of segmental EEG architectonics during both spontaneous (stimulus independent) 

and induced (stimulus dependent) brain activity.  

If the majority of RTPs are really the markers of the boundaries of quasi-stationary 

EEG/MEG segments, then the coefficient of within-segment amplitude variability (V) should 

be substantially higher for the randomly (stochastically) altered EEG/MEG when compared 

with actual one. As an example the analysis of EEG data (n = 10) was provided. In order to 

find the V value of the stochastic alternation in the actual EEG, it was subjected to a 

randomized mixing of all consequent amplitude values within each EEG channel separately. 

In such a way, the natural dynamics of amplitude values sequence within each EEG channel 

were completely destroyed, but the average values of amplitude for each channel remained the 

same as before mixing. This modified EEG was described as “random”. Using the procedure 

of randomly mixing amplitude values, the relative values of the V for stochastic alternations 

was estimated for each channel (Fig. 3).  

 

Figure 3. Averaged (n = 10,  
resting condition, closed  
eyes) values of the  
coefficient of amplitude  
variability (V) for alpha  
activity within quasi- 
stationary EEG segments.  
For comparisons analogous  
V values are shown for the  
same randomized EEG.   
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The V values of the actual EEG substantially differed (p < 0.01 – p < 0.001) from the 

“random” EEG. An excessive increase in the V values up to 50–60% for “random” EEG may 

indicate a stochastic process (compare with 20–30% for the actual EEG). This value presents 

an estimation of the maximum possible rate of relative alteration in the amplitude variability 

for a given EEG. Thus, this estimation testifies the fact that obtained segments in the actual 

EEG really have quasi-stationary nature and reflect the episodes of relative stabilization of 

neuronal activity within separate neuronal assemblies. One may notice also that occipital and 

temporal EEG locations exhibited more stationary segments (p < 0.05) than central and frontal 

locations (Fig. 3).  

These findings were characteristic for subjects with well-developed alpha activity. In 

order to check the behavior of segments in the EEG with a weak alpha rhythm we used the 

data obtained from the healthy subject with so-called “flat” EEG. Figure 4 presents as an 

example the distributions of average amplitude (A) and length (L) values of segments obtained 

for the subject with a high alpha activity and the subject with a “flat” EEG (n = 10 for each 

subject) during rest condition with closed eyes. EEGs of both subjects were filtered in the 

alpha frequency band (7–13 Hz).   

Even with the absence of alpha-peak in the EEG power spectrum (“flat” EEG), 

segmentation analysis reveled notably wide distribution of A values. However, the vast 

majority of segments in the “flat” EEG were characterized by lower amplitudes when 

compared with the “high-alpha” EEG (Fig. 4). The L values were also lower in the “flat” EEG 

than in the “high-alpha” EEG. Analogous data were obtained for MEG recordings (data not 

shown; see [27]). Taking together these findings revealed that conventional estimations of 

averaged power spectrum mask intrinsic (but stable) segmental structure of electromagnetic 

field. For example, low alpha-peak in the average spectrum does not suggest that in such EEG 

(or MEG) there are no high-alpha segments. It is obvious that only relative participation of 

each segment’s amplitude class determines the average level of EEG activity. 

Another step in our analysis concerned with the study of the possibility that different 

EEG/MEG segment attributes may be cross-correlated. Recall that we obtained five segment 

attributes (A, L, V, AR, S). Together these attributes reflect and permit investigating in detail 

the intrinsic nature of local (mesolevel) interactions in the neocortex.   
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Figure 4. The distributions of the average (n = 10, resting condition) amplitude (A) and 
length (L) value of EEG segments. Corresponding data are presented separately for “high-
alpha” and “flat” EEGs filtered in the alpha frequency band (7-13 Hz). The top row indicates 
the averaged power spectrum for corresponding EEG types. CE, closed eyes; OE, open eyes; 
Me, median. 
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To address the question of correlations between segment attributes, Pearson correlation 

coefficient (rr) between dynamical series of values of EEG segment attributes was calculated 

for each of the EEG location. As an example, the data are shown on the Table 1 for eyes-

closed-rest-condition for nine subjects (EEG, alpha band). Table 1 (I) illustrates rr for two 

separate EEG channels while Table 1 (II) presents rr when all EEG channels (n = 20) were 

considered together. 

 

Table 1. Pearson correlation coefficients (rr) between dynamical series of values of EEG segment attributes. 

I, Separate channels II, All channels

A L V AR S A L V AR
A  − -0.5±0.02 0.79±0.012  − A 0.15±0.1 -0.45±0.02 0.8±0.01
L  −  −  −  − O1 L  − 0.33±0.03
V -0.6±0.02  −  −  − V 0.19±0.1

AR 0.86±0.013  −  −  − AR
S  −  −  −  − S

F3

Left table illustrates rr for separate EEG channels while right table presents rr when all EEG channels considered 
together. The sign ± indicates mean error. O1, left occipital EEG electrode;  F3, left frontal EEG electrode. 

A, avarage amplitude within each segment; L, average length of segments; V, coefficient of amplitude variability within segment
AR, average amplitude relation among adjacent segments; S, average steepness among adjacebt segments
Table modified from Fingelkurts et al., 2004b NeuroImage.

 

 

Significant correlations for two separate EEG channels were observed only for A x V (rr 

= -0.5, p < 0.05) and A x AR (rr = 0.79, p < 0.05) segment attributes. Note that average 

amplitude (A) and average length (L) of segments, as well as other segment attributes were 

uncorrelated between each other (Table 1, I). These findings testify that majority of the 

changes of the EEG segment attribute dynamics were determined not by their mutual 

interrelations, but rather by external factors. Moreover, it permits using each of these segment 

attributes as an independent index of local operational architectonics of neocortex. It was also 

demonstrated that obtained peculiarities were very similar qualitatively in different 

experimental conditions (eyes open and closed, cognitive tasks and pharmacological 

influence) for both alpha and beta frequency bands (data not shown, see [42,30]).     

Each segment attribute has had a particular topological pattern containing 20 components 

(since there were 20 EEG channels). Therefore, it was interesting to check how similar were 

the topological patterns of different segment attributes. This analysis is presented on Table 1 

II. The topological factor (when all channels were taken into consideration) results in the 



 16

emergence of significant correlations between almost all segment attributes (Table 1, II). The 

strongest values of correlation were observed for A x AR (rr = 0.8, p < 0.05) and for AR x S 

(rr = 0.76, p < 0.05). At the same time, A and S were uncorrelated between each other. It 

seems that morpho-functional peculiarities of neocortex determine special conditions, which 

force similar shifts in pairs of different segment attribute patterns, when topological factor is 

considered.    

As for separate EEG channels, obtained peculiarities for topological patterns of segment 

attributes were very similar (qualitatively) in different experimental conditions. Taken 

together, these findings indicate that functional dynamics of neuronal assemblies took place 

within the rigid and narrow morpho-functional range, which limits temporal (within each 

location) and topological (between locations) relations between segment attributes. Most 

likely functional peculiarities of neuronal transient assemblies are reflected in the changes of a 

particular segment attribute per se along with changes in the functional or cognitive states, 

rather than in relations between the attributes.      

To address the question of functional dynamics of segment attributes, we estimated 

average values of segment attributes for different EEG amplitude classes. We used amplitude 

classes since the total averaging of all values within each attribute category has not 

physiological sense (there are EEG segments with high and low amplitude values). Thus, three 

amplitude classes were obtained: first and third classes contained 25 % of the segments with 

lowest and highest EEG amplitude correspondingly, while second class contained 50 % of the 

rest of the segments (medium EEG amplitude). EEG was filtered in alpha frequency band (7–

13 Hz). In such a way, the segments within these three classes would reflect different degree 

of local synchronization of cortical neurons within a particular cortex area. Thus, the high 

amplitude class corresponds to the large neuronal populations, and medium and low amplitude 

classes correspond to the medium- and small-size neuronal populations correspondingly. Also, 

some kind of normalization of cortical areas is fulfilled automatically: the local 

synchronization levels of occipital and frontal areas, for example, have got the same 

conditions.  

It was shown that values of L, AR and S were largest in the low amplitude class and 

smallest in the medium amplitude class (p < 0.01). Values of V were largest in the low 

amplitude class and smallest in the high amplitude class (0.01 < p < 0.001). Although these 

relations between segment attributes were identical for different experimental conditions, the 

behavior of individual attributes of different-size neuronal populations was sensitive to the 

cognitive loading [42] and pharmacological influence [30] as well as to the functional state of 
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the subjects (eyes-open, eyes-closed). Thus, classical effects of ERD/ERS where the ERD 

during cognitive tasks interpreted as transition from total synchronization of neuronal pools to 

almost “point” interrelations of neurons [56] may be substantially extended. Obtained findings 

on the dynamic of neuronal assembly attributes indicate that functional or cognitive loading 

results not in an elimination of neuronal assemblies, but rather realized in the process of their 

reorganization into more local and small cell assemblies. Perhaps, such reorganization permits 

the brain to process the larger amount of operations needed for appropriate cognitive activity. 

In the framework of this interpretation the periods of ERD and ERS are not the markers of 

episodes of “active work” and “rest” respectively, but rather are the signs of switching in the 

dynamic of cortical operations, which are equally active but differing in their processing 

architecture [8].  

Taken together the results of this section showed that segmentation technique permits to 

study in a precise manner the peculiarities of transient neuronal assemblies' behavior (local 

interactions in the neocortex), thus allowing to assess the mesolevel of brain description 

through large-scale measures as an EEG and MEG.  

It is obvious that local interaction among neurons and neuronal assemblies (mesolevel) 

cannot be independent from global integrative processes (macrolevel) in the cortex [54]. To 

the same conclusion also pointed the fact that topological factor leads to high values of inter-

correlation between different segment attributes (see above). This means that segment 

sequences between different EEG/MEG locations should be temporally synchronized. Such 

new type of functional interrelations between different cortical areas was called structural 

synchrony, SS (see Methods section).  

 

3.2. Structural synchrony       

The estimation of the time-spatial organization of the cortical EEG/MEG is one of the 

most promising approaches to study the integrative activity of the human brain. Because 

known approaches inevitably come up against the problem of the nonstationary nature of brain 

electromagnetic field we have proposed to analyze the functional brain cooperativity by the 

index of structural synchrony (ISS) which estimates the periods of mutual temporal 

stabilization of quasi-stationary segments in the multichannel EEG or MEG. Thus, analysis of 

topological ISS variability would make it possible to trace episodes of the stable cortical inter-

area cooperations at the macrolevel independently of partial correlation or coherency. 

In order to reveal the functional significance of the proposed ISS, we estimated the 

behavior of this index in several modeling experiments. In this part of the work we have 
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studied the ISS topological variability in the pairs of EEG channels recorded from longitudinal 

and transversal electrode arrays. Also the relationship of the ISS versus interelectrode distance 

was analyzed. Since the topological amplitude maps are varying tremendously between 

different subjects even during the controlled experimental conditions [14], the data in the 

present study were collected from the same subjects by numerous repetitions of EEG 

recording (n = 24 for each). Two subjects with well-developed alpha activity participated. Re-

testing was conducted after one or two weeks in order to assess temporal stability of obtained 

effects. EEG was registered from 16 electrodes placed with equal interelectrode distance in 

two ways: 1) longitudinal array (n = 16) placed from O2 to Fp2 location (average distance 

between electrode centers was 1.9 cm) and 2) two transversal arrays (n = 8 each) placed 

frontally from F8 to F7 and caudally from T4 to T5 location (average distance between 

electrode centers was 2.9 cm).  

Obviously, for short epochs there is a strong likelihood that the two time series, even if 

entirely independent, will have by chance some degree of synchronicity and this is called the 

bias [11], so the confidence (stochastic) levels should be calculated for any sample. That is 

why data from actual EEG was compared with so-called “surrogate” EEG in which a mixing 

of actual EEG channels was done in such a way that each channel was recorded in a different 

time. So that, the natural time relations between channels in such EEG were completely 

destroyed, however, the number and the sequence of segments within each channel remained 

the same as in the actual EEG. The ISS values obtained from the “surrogate” EEG would thus 

indicate the relative rate of stochastic alternations (confidence levels) of ISS in the actual 

EEG.  

First of all, it was important to analyze how the level of SS in pairs of EEG channels, 

taken with equal interelectrode distance, depends from the particular location of each EEG 

pair on the longitudinal line along the right hemisphere in the posterior-to-anterior direction. 

This data are presented on Figure 5. The ISS values for all EEG channel pairs vary from 2.7 to 

8.7 and significantly (p < 0.01 – p < 0.001, Wilcoxon test) exceeded the level of stochastic 

synchronization (the 0.4 level). At the same time, despite the fact that all testing pairs had the 

same interelectrode distance, the average ISS (n = 48) exhibited the notable topological 

picture: it significantly decreased (p < 0.05) in a particular location of EEG electrode pair on 

the head (Fig. 5). However, even the lowest values of ISS were above the stochastic level of 

synchronization (p < 0.05). This data clearly indicate that there are well-outlined cortical areas 

at the boundaries of which the temporal consistency of segmental architectonics of electrical 

field became weak. Such findings are in line with conventional approaches where it was also 
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shown that coherence could be quite local and that adjoining pairs, although sharing one site, 

can be quite different [12].    
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Figure 5. Mean ISS in the EEG channel pairs, which were located along the longitudinal 
array of electrodes (posterior-to-anterior), situated on the scalp above the right 
hemisphere of human brain (n = 48). On the horizontal axis the number – label of 
electrodes, which form pairs of EEG channels, is shown. Pairs 1-2, 5-6, 9-10 and 13-14 
correspond to O2, P4, C4 and F4 electrode positions in standard 10-20 International System. 
Vertical axis indicates the relative values of ISS. The light and dark histograms correspond to 
raw and filtered in alpha frequency band EEG correspondingly. Horizontal dotted line shows 
the maximal level of stochastic ISS for “surrogate” EEG, where different channels are dis-
coordinated in time among each other. “*” – statistically significant (p < 0.05, Wilcoxon test) 
decreasing of ISS in regard with neighboring values. 

 

Figure 6 presents the data on the topological dynamics of ISS in the two transversal 

arrays: between right and left lower frontal cortical areas (along the line of standard electrode 

positions F8, F4, F3 and F7) and between right and left temporal-parietal cortical areas (along 

the line of standard electrode positions T6, P4, P3 and T5). 

Obtained data indicate that anterior and posterior brain areas had opposite tendencies in 

the ISS dynamic. While for the anterior areas the maximal ISS value was detected only for one 

interhemispheric EEG channels pair (4-5), the same pair showed the minimal ISS value for 

posterior areas. Here, maximal ISS values in the posterior cortical areas were obtained for 

homological lateral EEG locations in temporal-parietal areas (Fig. 6). However, these values 

did not reach statistical significance. Note, that the pairs of homological areas had the similar 

ISS values. The architecture of callosal axons [46] seems very well fits the obtained results. It 
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was shown that in the anterior part of the brain callosal connections with the same input are 

very dense near the inter-hemispheric fissure, while in the posterior part the inter-hemispheric 

fissure is wider and callosal neurons preserve many neighboring connections ipsilaterally 

along with contralateral ones [5]. A functional interpretation of this fact is that the 

organization of the frontal regions favors long distance integration and coordination, while 

posterior regions are more involved in the local processing [67]. It is worth to note, however, 

that even the lowest values of ISS in our experiment were above the stochastic level of 

synchronization (p < 0.05, Wilcoxon test). 
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Figure 6. Mean ISS in the EEG channel pairs, which were located along the two 
transversal arrays of electrodes (right-to-left), situated on the scalp above anterior (dark 
histograms) and posterior (light histograms) cortical areas (n = 48). On the horizontal axis 
the number – labels of electrodes, which form pairs of EEG channels are shown. Vertical axis 
indicates the relative values of ISS. Horizontal dotted line shows the maximal level of 
stochastic ISS for “surrogate” EEG, where different channels are dis-coordinated in time 
among each other. “*” – statistically significant (p < 0.05, Wilcoxon test) decreasing of ISS in 
regard with maximal values of ISS in each array. 

 

Taken together (Fig. 5 and 6) these findings suggest that ISS (estimated in neighboring 

EEG pairs) has notable topological peculiarities along the neocortex and thus is sensitive to its 

morphological and functional organization. Indeed, it is assumed that the cortex is not 

spatially homogeneous – i.e. is anisotropic [67] and, therefore, ISS values reflect this 

anisotropy. However, the question whether the ISS depends on the distance between EEG 

electrode locations is remained. To answer this question, the comparisons of mean values of 

ISS in pairs of EEG derivations (filtered in the alpha band) as a function of gradually 
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increasing interelectrode distance in longitudinal array of electrodes for posterior-to-anterior 

direction and vise versa (anterior-to-posterior direction) are presented on Figure 7.   
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Figure 7. Mean ISS values in the EEG channel pairs for increasing interelectrode 
distances in the longitudinal array of electrodes, situated on the scalp above the right 
hemisphere of human brain (n = 48). Dotted line – posterior-to-anterior straight direction – 
posterior electrodes (1, 2, 3, …), anterior electrodes (…14, 15, 16). Solid line – anterior-to-
posterior backward direction. On the horizontal axis the number – label of electrodes, which 
form pairs of EEG channels are shown. Vertical axis indicates the relative values of ISS. 
Horizontal dotted line shows the maximal level of stochastic ISS for “surrogate” EEG, where 
different channels are dis-coordinated in time among each other. “*” – statistically significant 
(p < 0.05, Wilcoxon test) difference between ISS values in straight and backward dependences 
and within the same dependence. 

 

Based on the volume conduction model, assuming that there is spatial homogeneity in a 

non-connected system, one would expect the ISS values to exhibit a smoothed decrement with 

increased interelectrode distance. Moreover, this decrement should be equal for posterior-to-

anterior versus anterior-to-posterior directions. Indeed, we demonstrated that the ISS 

decreased with the increasing of the interelectrode distance. However, the relationship 

between the ISS and interelectrode distance was not monotonous: One can see the step-wise 

dependence with first step-down at the 3.8 cm (1-3 electrodes), second and third steps-down 

around 9.5 cm (1-6 electrodes) and 15.2 cm (1-9 electrodes) correspondently. Previous studies 

measuring EEG coherence also pointed to a decrease of coherence values with increasing 

interelectrode distance, however, this dependence was clearly monotonous [12]. Note also that 

practically all ISS values in our experiment were significantly higher (p < 0.05 – p < 0.01 for 
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different pairs, Wilcoxon test) than the stochastic level of synchronization in the “surrogate” 

EEG (Fig. 7). This notably indicates that even on maximal interelectrode distances there was 

substantial synchrony between the structural peculiarities of electrical field.   

We also found that straight (posterior-to-anterior) and backward (anterior-to-posterior) 

dependences of ISS from the interelectrode distance were significantly differing between each 

other. The ISS decreasing for the straight direction was significantly higher (p < 0.05) than for 

the backward direction (Fig. 7). Such so-called “spatial hysteresis”, obviously pointed that ISS 

reflects morpho-functional peculiarities of the different cortical areas and is indicative of a 

non-isotropic nature of the cortex electrical field, rather than reflects the process of volume 

conduction of the electrical field in the brain tissue. If ISS would really reflect only volume 

conduction, changes in the values of ISS should have been equal for the same distances, 

regardless of which brain areas are involved. Clearly, they were not (see the existence of 

“spatial hysteresis”, Fig. 7). This finding is in line with the one described above: Note that the 

steps in the ISS decreasing (for both directions) coincided with the areas of the cortex where 

the SS process became weaker (compare Fig. 5 and 6). The hysteresis-like dependence has 

been extensively documented for coherence analysis also ([67,55,12] among others).  

In connection with these findings it was interesting to study the dependence of ISS from 

the interelectrode distance in the transversal arrays. Initially we supposed that in this way the 

“spatial hysteresis” in the dynamic of ISS from right-to-left and from left-to-right directions 

would indicate the existence of some sort of interhemispheric asymmetry in the relations of 

ongoing (without any functional loading) SS processes in the EEG. This data are presented in 

the Figure 8. 

We found that straight (right-to-left) and backward (left-to-right) dependences of ISS did 

not differ significantly between each other for both transversal arrays along the whole their 

length (Fig. 8 A and B). This finding indicates the absence of notable bilateral asymmetry in 

the dynamics of ISS in the spontaneous EEG activity, at least in the testing locations. At the 

same time, it is curious that the ISS decreasing (p < 0.05) along with increasing of 

interelectrode distance took place only until forth electrode (8.7 cm) with further stabilization 

of ISS values until seventh electrode, and increasing (p < 0.05) of ISS value in the pair of most 

distant electrodes 1–8 (20.3 cm). These unintuitive for the first sight data are not so surprising 

if we take into consideration the morphological and functional organization of neocortex. 

Recall that forth and fifth electrodes were situated on different sides from the inter-

hemispheric fissure, which separates two brain hemispheres. So, in contrast to longitudinal 

array where with increasing distance between EEG electrodes the difference between morpho- 
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Figure 8. Mean ISS values (n = 48) in the EEG channel pairs for increasing 
interelectrode distances in the transversal arrays of electrodes, situated on the scalp 
above parietal-temporal cortical areas (A) and frontal cortical areas (B). Solid line – 
right-to-left direction – right electrodes (1, 2, …), left electrodes (…7, 8). Dotted line – left-to-
right direction. On the horizontal axis the number – label of electrodes, which form pairs of 
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EEG channels are shown. Vertical axis indicates the relative values of ISS. Horizontal dotted 
line shows the maximal level of stochastic ISS for “surrogate” EEG, where different channels 
are dis-coordinated in time among each other. “*” – statistically significant (p < 0.05, 
Wilcoxon test) difference between ISS values in position 1-2 (8-7) and ISS values in all other 
positions. 
 

 

functional organization of corresponding cortical areas also increased, in the case of 

transversal arrays the morpho-functional differences firstly increase from first till forth 

electrode (or from eight till fifth), and then decreased reaching its minimum in the most 

distant, but homologically identical electrode positions 1–8 (F7–F8 and T5–T6 for frontal and 

temporal-parietal arrays correspondingly). That is why the ISS in such pairs (with maximal 

interelectrode distance) exhibited the notably increased values. Anatomical and morphological 

studies support this finding, pointing that in associative and especially primary cortical areas 

the callosal connections exist between homological cortical regions [5]. Probably, the ISS has 

a little dependence from interelectrode distance if these electrodes are situated above 

homological cortical areas. At least for the posterior array this hypothesis was proved (see Fig. 

9). However, for the anterior array the opposite dependence was significant (p < 0.05). Such 

differences in the ISS for the anterior and posterior arrays may reflect differences in the 

morphological and functional organization of the neocortex in these areas. Since the SS 

process is relatively independent on spectral intensity [41,28], the known differences in EEG 

spectral intensity between the posterior and anterior regions cannot account for these findings. 

Also, note that all values of ISS significantly exceeded the stochastic level of synchronization 

in the “surrogate” EEG (Fig. 9).  

Thus, our analysis of the results of modeling experiments strongly pointed that ISS is 

sensitive to morpho-functional organization of the neocortex, resulting in higher values of 

structural synchrony between cortical areas which are homological and, thus, most likely 

participating in the same functional acts. However, the distance between these areas has its 

contribution to the ISS also.  

More generally, these findings suggest the existence of statistical heterogeneity 

(anisotropy) of electromagnetic field in regard to the processes of mutual stabilizations of 

regional EEGs and/or MEGs. These conclusions get more evidence power considering that the 

subjects underwent the same experiment with the same conditions twice. The test-retest 

reliabilities of the obtained ISS values between the two sessions (obtained through 1–2 weeks) 

were very high what confirmed the reliabilities of the findings. The test-retest reliabilities 
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minimize both Type I and Type II errors because by definition chance findings do not 

replicate [17].  
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Figure 9. Mean ISS values (n = 48) in the EEG channel pairs registered from 
symmetrical cortical areas in anterior (dark histograms) and posterior (light histograms) 
transversal electrode arrays. On the horizontal axis the number – label of electrodes, which 
form pairs of EEG channels are shown. Vertical axis indicates the relative values of ISS. 
Horizontal dotted line shows the maximal level of stochastic ISS for “surrogate” EEG, where 
different channels are dis-coordinated in time among each other. “*” – statistically significant 
(p < 0.05, Wilcoxon test) difference between ISS values in a tested position. 

 

Most likely, the topological peculiarities of SS phenomenon obtained in the described 

study are related with well established already in the classical work of Motokawa (1944, cited 

on [36]) fact on the spatial heterogeneity of neocortex, measuring by crosscorrelation. Later 

this fact has got considerable support [36,55,67]. Although there are several fundamental 

investigations of crosscorrelation and coherency relations in longitudinal and transversal 

arrays of EEG electrodes [12,36,55,67], for us it was important to obtain crosscorrelation 

coefficients exactly from the same EEG registrations, since we wanted to make precise 

comparisons between SS and crosscorrelation approaches.  

 

3.3. Comparisons of SS index and Pearson correlation coefficient  

In order to compare the results of proposed approach of structural synchrony (SS) with 

some of conventional methods, the Pearson coefficients of correlation (rr) were calculated for 

the same data. However, the segment metaphor of EEG architectonic demands more accurate 

estimation of rr than it is usually done. Thus, the rr were calculated for consecutive short 

segments of EEG by means of sliding window (256 data-points = 2 sec). This size of window 
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was chosen since it is well established that EEG signal is relatively stationary within 2 sec (for 

the discussion see [15,37]. The crosscorrelation function on the zero shift (rr0) and the 

maximum value of this function (rrmax) were estimated in each window. The resulted values (n 

= 30 for each EEG) of rr0 and rrmax were obtained as average values of rr for all windows in 

each EEG recording. The time shift of correlation function for rrmax does not analyzed in this 

work, since for the purposes of the present analysis it was important to compare the values of 

rr0 and rrmax (see below). All operations with rr were done after the normalization procedure 

using the Fisher z-transformations: 
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The hypothesis about no differences between two samples of rr were checked using 

statistics λ, which has near normal distribution: 
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where z1 and z2 – z-estimations of rr testing, n1 – 3 and n2 – 3 – the degree of freedom 

for corresponding samples.   

 

Table 2. The rr0 and rrmax values in neighboring EEG channel pairs in the longitudinal 
array (posterior-to-anterior) of electrodes (for details see Fig. 5).       

 

Pairs rr0 rrmax p 
1-2 0.99 0.99 --
2-3 0.94 0.95 --
3-4 1.00 1.00 --
4-5 0.83 0.88 **
5-6 0.99 0.99 --
6-7 0.97 0.97 --
7-8 0.99 0.99 --
8-9 0.92 0.91 **
9-10 0.99 0.99 --

10-11 0.99 0.99 --
11-12 0.95 0.95 * 
12-13 0.99 0.99 --
13-14 0.99 0.99 --
14-15 0.96 0.96 --
15-16 0.99 0.99 --

 
* – p < 0.05, ** – p <  0.01 statistically significant (Wilcoxon test) decreas of rr0 and rrmax 
in regard with the neighboring values. 
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Table 2 presents the values of rr0 and rrmax in pairs of neighboring EEG channels in the 

longitudinal array (posterior-to-anterior direction). Three pairs (4–5, 8–9 and 11–12) exhibited 

significant decrease of rr0 values in regard to the majority rr0. Similar tendency was observed 

in the dynamic of 2–3 and 14–15 EEG pairs (Tab. 2). Obtained decreasing in rr0 values, 

however, was not related to the phase shift of EEG rhythmic component since almost in all 

cases the values of rr0 and rrmax coincided between each other.   

Although the results of crosscorrelation analysis (Tab. 2) and analogous data for ISS (Fig. 

5) were similar, the SS description of interrelations between cortical areas was more contrast 

and pronounced. The same rule was found when the interelectrode distance was taken into 

consideration (Tab. 3). The rr values decreased more strongly for straight (posterior-to-

anterior) dependence than for backward (anterior-to-posterior) dependence. Here also the 

phase shift was not the main factor since the decrease in rr values was similar for rr0 and 

rrmax. However, the fall of rr values (Tab. 3) was much more monotonous than the decrease in 

ISS values (Fig. 7). 

 
Table 3. Mean rr0 and rrmax values for increasing interelectrode distances in the 
longitudinal array (posterior-to-anterior versus anterior-to-posterior) of EEG 
electrodes (for details see Fig. 7). 

 
Pairs rr0 

(p-to-a) 
rr0 
(a-to-p) 

P rrmax 
(p-to-a) 

rrmax 
(a-to-p) 

P 

1-2 0.99 0.99 -- 0.99 0.99 -- 
1-3 0.95 0.96 -- 0.95 0.96 -- 
1-4 0.95 0.95 -- 0.95 0.95 -- 
1-5 0.68 0.95 ** 0.78 0.95 ** 
1-6 0.65 0.86 ** 0.76 0.86 * 
1-7 0.55 0.86 ** 0.67 0.86 ** 
1-8 0.50 0.83 ** 0.65 0.83 ** 
1-9 0.21 0.64 *** 0.51 0.66 * 
1-10 0.16 0.61 *** 0.49 0.65 * 
1-11 0.13 0.50 *** 0.49 0.57 * 
1-12 -0.01 0.47 *** 0.45 0.57 * 
1-13 -0.02 0.07 -- 0.45 0.44 -- 
1-14 -0.01 0.07 -- 0.45 0.44 -- 
1-15 -0.06 -0.05 -- 0.44 0.43 -- 
1-16 -0.06 -0.06 -- 0.43 0.43 -- 
 
* – p < 0.05, ** – p <  0.01, *** – p < 0.001, statistically significant (Wilcoxon test) 
decrease of rr0 and rrmax in regard with array edge values. 
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The dynamic of rr0 for pairs of EEG channels in transverse arrays also repeated the 

dynamics of analogues data for ISS (Tab. 4), but in a much more monotonous way. Similar 

monotonous dependence, but for coherence values was also found [12]. 

    

Table 4. Mean rr0 and rrmax values in neighboring EEG channel pairs in the 
transversal arrays (right-to-left) of electrodes in posterior and anterior parts of cortex 
(for details see Fig. 6).   
     

Pairs Posterior Anterior p 
1-2 0.91 0.92 -- 
2-3 0.93 0.95 -- 
3-4 0.88 0.95 ** 
4-5 0.87 0.98 *** 
5-6 0.92 0.95 ** 
6-7 0.95 0.93 -- 
7-8 0.91 0.88 -- 

 
* – p < 0.05, ** – p <  0.01, *** – p < 0.001, statistically significant (Wilcoxon test) 
differences of rr between the same electrode pairs taken for different arrays. 
 

 

Obtained similarity (at least for the high-alpha EEG) in the two principally different 

approaches for estimation of the functional relations between cortical areas, probably, reflects 

the fact that both approaches are sensitive to the same basic characteristic of bioelectrical 

field. However, since the ISS values were more contrast in detecting the nonhomogeneity of 

this field, most likely exactly the temporal synchrony between segmental structures of local 

EEG determines the estimated values of rrmax between them. Indeed, when alpha activity is 

well developed, the highest phase stabilization is observed within alpha-spindles [52]. The 

rapid transition periods (RTP) also more frequently located in the beginning and the end of 

alpha-spindles in the case of well developed alpha activity [20]. Thus, the more frequent and 

precise is the temporal synchronization of these alpha-spindle segments (or other quasi-

stationary segments) in two signals, the higher would be the maximal average values of 

crosscorrelation function. Considering a well known high degree of comparability between 

correlation and coherence analyses under normal physiological conditions, we may predict 

that the same relation would be valid also for the coherence measure (Coh).   

Therefore, findings of the present study enable us to conclude that temporal consistency 

of EEG segmental structure initially underlies and determines the high values of rr (and 

coherency). However, in the case of less structured architectonics of electromagnetic field and 

during cognitive tasks, the dynamic characteristics of SS and rr (Coh) indices may 
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substantially mismatch [8]. The data obtained from transversal arrays, where interelectrode 

distance was taken into consideration, support this supposition (Tabl. 5). Since the alpha 

activity was not pronounced in the temporal and low frontal areas, the dynamic of ISS and rr 

values were notably different in these areas. The rr values decreased monotonically along 

whole array distance (Tabl. 5) while the ISS values significantly increased in the pair of the 

most distant, but functionally homologies EEG electrodes (Fig. 8), thus indicating that ISS in 

contrast to rr is more sensitive to morpho-functional peculiarities of the neocortex. This 

interpretation is also supported by cognitive studies demonstrating an opposite tendencies in rr 

and ISS values during cognitive loading [8]. For example, the rr values decreased during 

arithmetic counting when compared with the rest state, while the ISS values increased. Also 

the topology of connected cortical areas was differing for crosscorrelation and structural 

synchrony approaches [8]. 

    

Table 5. Mean rr0 and rrmax values for increasing interelectrode distances in two 
transversal EEG arrays (for details see Fig. 8). 
 

Pairs rr0 rrmax
 Posterior Anterior Posterior Anterior 
1-2 0.91 0.92 0.91 0.92 
1-3 0.87 0.84 0.87 0.84 
1-4 0.72 0.75 0.73 0.75 
1-5 0.61 0.69 0.62 0.69 
1-6 0.55 0.64 0.56 0.64 
1-7 0.48 0.57 0.51 0.57 
1-8 0.43 0.50 0.46 0.50 

 
Here the statistically significant level (p < 0.05) for rr was equal to 0.21. The dispersion for 
averaged rr values did not exceed 0.007.  

 
 

3.4. Application of segmental and SS methods 

The application of the segmental and SS methods for EEG/MEG signal analysis in 

neurophysiological studies demonstrated their sufficiently high sensitivity in estimation of the 

EEG/MEG segments and synchrony dynamics related to different functional states of subjects 

[41], sleep stages [45], cognitive and memory processing [28], pharmacological influences 

[29,30], multisensory integration [27], and in psychiatry [8].  
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4. Concluding remarks 

 

Among the many electro- and magneto-physiological signals of the human organism 

encountered in basic and clinical research, the EEG (and MEG) has the most of non-stationary 

behavior. Indeed, EEG/MEG signals have been shown to have non-stationary behavior in a 

variety of contexts [68,28,65]. From a theoretical point of view, the activity of neuronal 

assemblies (as nonlinear dynamic systems) should inevitably be nonstationary since it reflects 

the different stages of a self-organized process [63]. At the same time, the phenomenology of 

the EEG/MEG signal shows that it can be presented as a sequence of quasi-stationary 

segments, which are separated by the rapid transitive processes [7] (for the reviews, see 

[3,40,21]).  

In the present paper we observed the novel methodology for the piecewise analysis of 

EEG/MEG signal (SECTION 01®). This approach segments the EEG/MEG signal and 

simultaneously identifies the five quantitative attributes for each EEG/MEG segment. We 

supposed that in these segments the quasi-stable activity of neuronal assemblies are reflected. 

The analysis presented in this paper suggests that it may have important usages to identify 

physiological components that retain their identity despite the inter-subject EEG/MEG 

substantial variability. Such results are not possible with conventional methods of EEG/MEG 

analysis because they are not sensitive to the underlining quasi-stationary nature of the signals. 

If EEG/MEG segments are real local phenomena, then it is possible to suppose that 

between such segments there should be a certain functional connection. This supposition has 

leaded us to develop a new methodology for identifying functional connectivity in the 

multichannel EEG/MEG signal (JUMPSYN 01®): Estimation of coincidences of the 

boundaries between quasi-stationary EEG/MEG segments. With this methodology we have 

discovered a new type of integrative brain activity – structural synchrony (SS). It is important 

to note that in the case of SS processes, it is not the immediate amplitudes of the signal in the 

EEG/MEG pairs and their rhythmical components, but the moments of shifting of quasi-

stationary EEG/MEG segments among different channels that are synchronized. This type of 

synchrony reflects a true functional connectivity between different brain areas by means of 

coupled operations (for a discussion, see [24]). It seems that this hypothesis is consistent with 

Friston’s conception about two different types of synchrony [33]: synchronous cortex 

connectivity (like correlation, coherency etc.), and asynchronous coupling as nonlinear 

interaction between neuronal populations or assemblies. Most likely, discovered by us 
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structural synchrony is an explicit characteristic of such nonlinear type of cortex functional 

integration. 

Even though, much more research is needed to study further the behavior of local and 

remote structural synchrony during different brain functional and pathological states, the 

capacity of SECTION 01® and JUMPSYN 01® technologies to reveal the EEG/MEG structure 

(in terms of segments and structural synchrony) is apparent. These technologies made it 

possible to develop new insights regarding the time structure of EEG/MEG and provide 

practical indexes which can serve as additional diagnostic markers of some brain and 

psychiatric disorders [25]. Further work is needed to determine the generality of these findings 

and to test the hypothesis that there are different time-scales on which structural descriptions 

of EEG/MEG can be done. This would be a major step towards a better understanding of the 

functional organization of the neocortex. 
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