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Abstract: Objective: In the present experimental study, we examined the 
compositions of brain oscillations and their temporal behavior in broad 
frequency band (0.5-30 Hz) in interictal EEG without epileptiform 
abnormalities during generalized epilepsy in resting conditions. Methods: 
The exact compositions of brain oscillations and their percent ratio were 
assessed by a probability-classification analysis of short-term EEG spectral 
patterns (SPs), which reveals temporal dynamics of these SPs and results in 
the probability classification profile. Results: It has been demonstrated that 
the interictal EEG was characterized by (a) a shift towards higher 
frequencies in all observed brain oscillations, (b) an increased amount of 
polyrhythmic activity, (c) a decrease in SP types diversity, (d) a decreased 
relative incidence of the SP type change in the transition between 
neighboring EEG epochs of the same EEG, and (e) an increased temporal 
stabilization periods of polyrhythmic activity. All these were observed in 
distributed brain areas. Conclusions: It was suggested that these findings 
reflect a disorganization of neurodynamics in the epileptic brain. At the 
same time, the fact that all these indices were significantly different from 
surrogate EEG reflects a non-occasional and thus, most likely, an adaptive 
nature of the microstructural reorganization of interictal EEG. Significance: 
Parameters of interictal EEG without the signs of epileptiform activity can 
be considered as additional information in premorbid diagnostics of 
epistatus. 
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1. Introduction 

 

Epilepsy is amongst the most common disorders of the nervous system (Joensen, 1986) 

and epileptic seizures are a principal brain dysfunction with a significant impact on public 

health, as they affect 0.8% of humans (Martinerie et al., 1998). For the vast majority of 
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patients, seizures occur in the absence of any identifiable warning and about 20% of these 

patients are resistant to drug treatment (Sander and Shorvon, 1987). Such a situation requires 

further investigation of the characteristics of the epileptogenic brain itself in order to find the 

rules which determine the epileptic brain functional state and lead to seizure. In addition, the 

epileptogenic process is a natural model - its main manifestations consist of functional 

deviations of the healthy brain - permitting researchers to shed the light on many aspects of 

the healthy brain by studying the pathological changes in different brain functions.  

Epilepsy may be considered as the manifestation of re(dis)organization of a highly 

integrated functional whole (i.e. the brain) governed by certain inherent laws. For example, 

Iasemidis and co-authors demonstrated that “epileptic seizure occurs when spatiotemporal 

chaos in the brain dynamics fails:”, in other words “the seizure represents a mechanism for 

returning brain dynamics from so-called order to a more normal (chaotic) state” (Iasemidis 

and Sackellares, 1996, for the comprehensive review, see Sackellares et al., 1999). This 

finding strongly suggests that the mechanisms underlying epilepsy cannot be fully 

understood through investigation of the synaptic transmission and neuronal physiology; 

rather they should be interpreted in the context of the dynamical properties of a reorganized 

large-scale system. As is well known, new qualities may emerge at a macroscopic level in a 

system via self-organization processes (Haken, 1988). Here, electroencephalogram (EEG) 

and magnetoencephalogram (MEG) provide a satisfactory scale for accessing the large-scale 

dynamic of the brain’s activity (with a temporal resolution in the order of milliseconds) 

associated with health and disease (Livanov, 1977; Nunez, 2000). Indeed, spontaneous 

activity at the cortical level does reflect different neurological states and functional properties 

of neuronal assemblies (Lopes da Silva, 1991). 

Recently, the brain has been seen as a massively interactive, dynamic system, without 

any centralized control which displays a characteristic metastability around certain 

homeostatic levels (Kaplan 1998; for the resent review on metastability in the brain see 

Fingelkurts and Fingelkurts, 2004). In the metastable regime of brain functioning, the 

individual parts of the brain exhibit tendencies of functioning autonomously at the same time 

as they exhibit tendencies of coordinated activity (Bressler and Kelso, 2001). In this context 

chronic epilepsy may be conceptualized as a new metastable state around altered homeostatic 

levels (Velazquez et al., 2003). At this point adaptation may set in, which is a semipermanent 

self-reorganization of the system which may lead to anatomical, biochemical and functional 

changes, and to the shift of the receptor sensitivity threshold. Such adaptation makes it 

possible to live with the disease. 
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From this point of view the epileptic brain should have characteristic differences from 

the intact brain even in the interictal period (i.e., EEGs recorded during the seizure-free 

interval) without signs of any epileptiform abnormalities. There are several converging 

pieces of evidences to support this idea mentioned above. Thus, it was demonstrated that (a) 

the degree of EEG complexity in the interictal period is significantly reduced for epileptics 

for most of the electrodes (Ravelli and Antolini, 1992; Weber, 1998; Bhattacharya, 2000; 

Jing and Takigawa, 2000); (b) successive changes (decrease in synchronization) in brain 

dynamics start long before the actual seizure (Mormann et al., 2000); (c) the presence of 

regional slow-wave activity in interictal EEG (Gastaut et al., 1985; Koutroumanidis et al., 

1998; Massa et al., 2001); (d) a number of spectral measures differed between epileptics with 

normal interictal EEG and healthy control (Drake et al., 1998); (e) a significant slowing of 

alpha-frequency activity exists (Gelety et al., 1985); and (f) the epileptic process is governed 

by long-term recurrent trends in spatio-temporal dynamics (Martinerie et al., 1998). 

However, in the majority of cases the interictal EEGs without signs of epileptiform 

patterns are considered normal (Desai et al., 1988). This can be explained by the fact that the 

interictal EEG is examined often visually or with the help of conventional spectral 

decomposition. The latter approach uses averaged EEG parameters, based on extended 

periods of time and/or broad fixed frequency bands for a specific lead. At the same time, as 

was demonstrated, the averaging of the EEG signal may not only mask the temporal 

dynamics of the EEG characteristics, but may also lead to ambiguous data interpretation 

(Kaplan and Shishkin 2000; Fingelkurts et al., 2002, 2004b). Hence, when examining the 

average brain electromagnetic parameters, it is not clear whether the observed phenomenon 

is real (not the “virtual” result of averaging procedure) and typical for the whole analyzed 

signal. For example, it is not clear: whether the total power of particular brain oscillation is 

typical for the whole analyzed signal or for just a small portion of it. In fact, and as explored 

in our early work (Fingelkurts et al., 2003a, 2004b) the total power spectrum does not 

characterize each of the individual power-spectra for each EEG segment. Moreover, 

according to Dumermuth and Molinari (1987), total EEG power may be affected by 

polyrhythmic disorganized activity (a mixture of activity of small neuronal subpopulations 

each with its own mode (Tirsch et al., 2000)). In this case different indices and parameters of 

EEG may suffer from the influences of such activity, instead of reflecting true rhythmic 

activity.  

Additionally, in all the studies related to spectral analysis of the interictal EEG, the 

frequency bands were predefined and taken in isolation from each other. This does not permit 
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researchers to examine the behavior of the actual/natural composition of brain oscillations 

involved. At the same time, brain functions are indeed represented by multiple oscillations 

(Basar et al., 2000).  

In connection to this, it seems reasonable to examine the actual composition of brain 

oscillations and their temporal behavior in the broad frequency band (0.5-30 Hz) in interictal 

EEG without epileptiform abnormalities during resting conditions. To assess the exact 

composition of brain oscillations, their percent ratio and temporal dynamics one should use a 

robust, model-independent technique which considers the nonstationarity of EEG, does not 

require prior knowledge of the underlying dynamics and produces results which are easye to 

interpret in terms of their neurophysiological correlates. The probability-classification 

analysis of short-term EEG spectral patterns (SP) (Kaplan et al., 1999; Fingelkurts et al., 

2003a) satisfies all these criteria. This analysis results in temporal dynamics of short-term 

EEG SPs and probability classification profile (PCP): short-term power spectra are computed 

from a long EEG time series; then the individual power spectra are classified using a set of 

reference spectra; subsequently, the relative occurrence of each class is determined, resulting 

in PCP for each electrode and subject.  

It was demonstrated that PCP is highly stable over time (Fingelkurts et al., 2005 in 

press) and provides an adequate and detailed description of electromagnetic brain activity 

during health (Kaplan et al., 1999; Fingelkurts et al., 2003a,b) and pathological brain 

conditions (Fingelkurts et al., 2000). Another advantage of using PCP is that polyrhythmic 

disorganized activity is automatically isolated in a separate class, and thus does not affect 

classes with true rhythmic activity (Fingelkurts et al., 2003a). At the same time, class with 

polyrhythmic disorganized activity in its turn could be also subjected to analysis. This is 

justified since it was reported that the ratio of polyrhythmic disorganized activity in EEG 

spectrum is strongly influenced by genetic factors (Meshkova, 1988), and as was explored in 

our early work (Fingelkurts et al., 2003a, 2004b) the amount of polyrhythmic disorganized 

activity in EEG is dependent on the functional brain state.  

Hence, the aim of this study was to investigate the actual composition of brain 

oscillations and their temporal behavior in the broad frequency band (0.5-30 Hz) in interictal 

EEG without epileptiform abnormalities during resting conditions. Considering that chronic 

epilepsy may be conceptualized as a meta-stable state around new homeostatic levels of the 

brain, we hypothesize that interictal EEG without signs of epileptiform abnormalities have a 

number of differences from the EEG of healthy subjects. Such differences may constitute a 

tonic component of EEG microstractural organization (Fingelkurts et al., 2000) which can 
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serve as the field of action for hidden abnormalities governed by short-term causalities in the 

time series. 

 

2. Methods 

 

2.1. Subjects 

 
Six medication-free right-handed patients with generalized epilepsy (aged 17-40, 3 

females) were selected for the study. Inclusion criteria were the persistent presence of 

epilepsy for more than one year, and the absence of (a) any epileptiform activity in the 

interictal EEG, and (b) any neurological condition other than epilepsy, or any acute or 

chronic medical illness at the time of the EEG registration. Interictal epileptiform activity 

was identified via visual inspection according to the criteria laid down by the International 

Federation of Societies for Electroencephalography and Clinical Neurophysiology (IFSECN, 

1999). All patients were in good physical health, determined by a physical examination and 

laboratory evaluation including a complete blood count, glucose, and hepatic enzymes, renal 

and thyroid analyses. Patients could have taken medication for extended periods but not 

during the final two weeks. 

Seven sex- and age-matched healthy control subjects (aged 19-35, 3 females) 

participated in the study. Before inclusion, the control subjects underwent a medical 

examination and were also screened for EEG epileptiform activity. All control subjects had 

epileptiform-free EEGs. 

All the subjects studied gave informed written consent before enrolling in the study and 

institutional ethical committee approval was obtained. 

 

2.2. Procedure and data acquisition 

 
Five 16-channel 1-min EEGs were recorded for each subject during resting condition 

(closed eyes). Such ongoing EEG activity during resting condition reflects the current 

functional state of neuronal masses rather than a random process (Livanov, 1984; Fingelkuts 

et al., 2003b). Sixteen Ag/AgCl electrodes were placed bilaterally on the subject's scalp using 

the 10/20 system of electrode placement at O1/2, P3/4, C3/4, Cz, T3/4, T5/6, F3/4, Fz, F7/8. Vertical 

and horizontal electro-oculograms were recorded. All electrodes were referred to linked ears. 

Raw EEG signals were amplified and bandpass-filtered in the 0.5-30 Hz frequency range and 
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digitized at a sampling rate of 128 Hz by a 12-bit analog-to-digital converter. This frequency 

range was chosen because approximately 98% of spectral power lies within these limits 

(Thatcher, 2001). The impedance of the recording electrodes was always below 5 kΩ. The 

presence of an adequate EEG signal was determined by visual inspection of the raw signal on 

the computer screen. 

Instructions designed to minimize movement and relax jaw muscles resulted in 

suppressing the myogram class of artifact to the extent that the high-frequency spectrum was 

not significantly affected. Cardiac interference at low frequencies was also found to be 

minimal, with no spectral peak detection at the heartbeat frequency of around 1 Hz, or its 

harmonics. A subject was instructed also to look straight in front of him/her (even though the 

eyes were closed) and to avoid unnecessary eye movements. Constant visual EEG 

monitoring allowed for selection of only those artifact-free EEG recordings for analysis. 

To examine the actual composition of brain oscillations and their temporal behavior in 

EEG, a total of 18 (for epileptics) and 14 (for control subjects) artifact-free one-minute EEGs 

were selected in this study.  

 

2.3. Data processing 

 
Since EEG is widely referred to as a nonstationary signal with varying characteristics 

(Kaplan and Shishkin, 2000; see also Fingelkurts and Fingelkurts, 2001), brain oscillations 

are expected to be dynamic in nature. In order to capture such changing dynamics, the data 

series were divided into overlapping windows. Thus, individual power spectra were 

calculated in the range of 0.5–30 Hz with 0.5-Hz resolution (61 values), using FFT with a 2-

sec Hanning window shifted by 50 samples (0.39-sec) for each channel of one-minute EEG. 

According to previous studies, these values proved the most effective for revealing 

oscillatory patterns from the signal. The works which have studied the effect of epoch length 

on the variability of power spectrum (Levy, 1987; Kaplan, 1998) demonstrated that (a) the 

epoch-to-epoch variability with power spectra computed using 2-sec epochs was significantly 

less than the variability when power spectra were computed using longer epoch lengths, and 

(b) analysis using 2-sec epochs identified changes more rapidly than analysis using any 

longer epoch length, and the differences were clinically significant as well. Moreover, a 2-sec 

epoch is long enough to get a reliable estimation of the lowest frequency (0.5 Hz), and is 

short enough to be stationary (McEwen and Anderson, 1975; Inouye et al., 1995). Taken 

together these findings suggest that 2-sec epoch lengths are preferable when power spectrum 
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analysis is used. Thus, it is possible to obtain an entire set of individual short-term spectra of 

various types in accordance with the number of stationary EEG segments. Frequency 

resolution of 2-sec spectral patterns was a (sampling rate)/(number of samples in 2-sec 

epoch) = 128/256 = 0.5 Hz. According to the work of Kaplan (1998) in which the author 

studied the effect of window shift on disclosing oscillatory patterns from the signal using 

shifts from 1 to 256 samples, the window shift in 50 samples was the most effective. Sliding 

spectral analysis compensated for the effects of windowing, preventing us from losing 

information due to residual activity, and improving the statistical confidence in the results. 

As a result, the total number of individual spectral patterns (SP) for each channel of 1-

min EEG was 149 (Fig. 1). These SPs formed the multitude of the objects for further 

classification procedure. The compositions of brain oscillations (in terms of EEG SPs) were 

estimated with the help of a probability-classification analysis of the short-term EEG SPs 

(SCAN0.1, was suggested by A.Ya. Kaplan, Moscow State University). Details of this 

procedure can be found in Fingelkurts et al., 2003a. In short, this analysis was undertaken in 

two stages (Fig. 1). During the first stage, sequential single EEG SPs were adaptively 

classified in each channel of 1-min EEG using a set of standard SPs.  

Standard SPs were generated not before-hand but from the data itself. The set of 

standard SPs was formed automatically using heuristic procedures and Pearson’s correlation 

coefficients (CC): A pool of SPs (n = 14 016) was built from all the SPs of the entire EEG 

signal (all locations) for all subjects. From this pool, all identical SPs with peaks in the same 

frequencies were counted. The peak-detection was based on normalizing the SP to within-SP 

relative percentages of magnitude, where acceptance is achieved when the peak exceeds a 

given (60%) percent-magnitude (100% corresponds to the magnitude of the highest peak 

within the SP). The set of identical SPs with the highest count was the most likely candidates 

to form the “set of standard SPs.” Only those SPs with minimum cross-CC were selected. 

Thus, the standard set included 32 SPs. 

The basic procedure of adaptive classification was performed in three steps. 

During the first step, the initial matrix of cross-correlations between standard and 

current individual SPs of analyzed EEG was calculated for each channel separately. The 

current SPs that their CC passed the acceptance criteria of r ≥ 0.71 were attributed to their 

respective standard classes. Therefore, the same current SPs may be included simultaneously 

into different standard classes. The CC acceptance criteria r was determined such as for r ≥ 

0.71 more than 50% of the SP variances were coupled/associated. 
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Figure 1. The scheme of the data processing. Sliding spectral analysis, adaptive 
classification of spectral patterns (SP) and calculation of the probability-classification 
profiles (PCP) were done separately for each subject and each channel of 1-min EEG. 
Modified from Fingelkurts et al., Int.J. Psychophysiol, 2005, in press. 
Gray small numbers under each SP represent the numbers from 1 to 149. The numbers in the 
square represent the labels – types of classified SPs. Column “Hz” represents the main 
dominant peak(s) in particular SP. Presented PCP illustrates the composition and percent 
ratio of brain oscillations in O1 EEG for control subject during closed eyes condition. 
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During the second step, the current SPs included in a particular class were averaged 

within this class. The same procedure was performed for all classes separately for each EEG 

channel. On the back of this, the standard spectra were reconstructed but this time taking into 

account the peculiarities of the spectral description of concrete channel of the particular EEG. 

In this way an “actualization” of the initial standard SP set was performed. In other words, 

standard SPs were converted into so-called actual spectral patterns. This actual SP set was in 

turn used for the third step - the final classification of the current SPs: each of current SPs 

was attributed to only one actual SP class for which the CC was the maximum of the set of    

r ≥ 0.71.  

The adaptive classification technique employs several adequate correction algorithms to 

achieve a significant reduction in the variance of single spectral estimations and to take into 

account the relationship between neighbor frequencies in the frequency continuum (Kaplan 

et al., 1999; Fingelkurts et al., 2003a). This justifies the use of individual short-term SPs and 

increases the sensitivity of this analytical approach in revealing the dynamics of EEG 

oscillatory patterns. This SP classification method made it possible to identify up to 100% of 

the individual single spectra in the EEGs due to the algorithm’s ability to adapt to local 

signals. Considering that a single EEG spectrum illustrates the particular integral dynamics 

of tens and hundreds of thousands of neurons in a given cortical area at a particular point in 

time (Dumermuth and Molinari, 1987), it can be said that the SPs within each class are 

generated by the same or similar dynamics with the same or similar driving force. SPs from 

different classes, however, have had in effect different driving forces and therefore have been 

generated by different dynamics (Manuca and Savit, 1996). In this case, one type of SP may 

be considered as a single event in EEG phenomenology from the viewpoint of its spectral 

characteristics (see Appendix in Fingelkurts et al., 2005, in press). In this context, this 

analytical approach implicitly considers the nonstationarity of EEG (for the review on EEG 

nonstationarity see Kaplan and Shishkin, 2000) and produces results which, in contrast to 

many other approaches, have a neurophysiologically plausible interpretation and are 

clinically recognizable.   

As a result of the adaptive classification technique, each current SP was labeled 

according to the index of the class to which it belongs. Thus, a sequence of SP labels that 

represents the sequence of EEG oscillatory states through which the system passes was 

obtained. Hence, each EEG signal was reduced to a sequence of individually classified SPs 

(Fig. 1). 
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At the second stage, PCPs of SPs for each channel of 1-min EEG in each subject were 

calculated (Fig. 1). These PCPs were calculated by taking the relative number of cases of an 

SP type as a percentage of the total amount of all SPs within each EEG channel – presented 

as the histogram of relative presence of each SP type (Fingelkurts et al., 2003a). PCPs were 

averaged across 14 (for healthy subjects) and 18 (for epileptics) 1-min EEG signals 

separately for each EEG channel. It was expected that these PCPs would make it possible to 

illustrate in detail (in SP description) the composition of brain oscillations and their percent 

ratio.   

In addition, three indices were calculated for each subject separately for each condition 

and channel of each 1-min EEG:  

a) The percentage of polyrhythmic/disorganized activity (PA), – represented by 

polyrhythmic spectral patterns. A polyrhythmic spectral pattern constitutes a pattern where 

peaks occupy a majority of the frequencies within the studied range. Such a spectral pattern 

indicates a mixture of activity of small neuronal subpopulations, each with its own mode 

(Tirsch et al., 2000).  

b) Index of non-homogeneity of classification profile (NHCP) was estimated as a ratio of 

the number of SP types detected in a given 1-min EEG to the total number in the standard set 

(32 standard SPs – 100%). This index indicates how many different SP types participate in 

PCP.  

c) Index of non-stability of classification profile (NSCP) is a percent value that reflects 

how the set of distinct SP types changes across the three EEG sub-segments of 20-sec within 

a complete 1-min. 
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Where ni, is the number of distinct SP types found in a 20-sec EEG segment i; ns is the 

number of SP types found in all three 20-sec EEG segments. The range of this index is 0–67. 

 

2.4. Statistics 

 
We studied the behavior of each type of spectral patterns separately and did not make 

any conclusions per se about any differences between PCPs. In order to reveal any 

statistically significant differences in the relative presence of each SP type in PCPs between 
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epileptics and control subjects, the Wilcoxon test was used separately for each type of SPs 

presented in the PCPs. Statistical significance was assumed where P < 0.05 (only statistically 

significant values are displayed). Since we intended to assess each variable in its own right, 

no Bonferroni correction was applied (for the problems associated with Bonferroni 

adjustments, see Perneger, 1998). The decision not to make adjustments for multiple 

comparisons will lead to fewer errors of interpretation when the data under evaluation are not 

random numbers but actual observations of nature (Rothman, 1990). 

Surrogate data were used to control for the neural origin of the temporal dynamics of 

SPs, which is commonly applied as direct probing a signal for a non-random temporal 

structure (Ivanov et al., 1996). Surrogate signals have identical parameters with the original 

signals but do not have temporal correlations. Thus, each channel of the actual EEG was 

subjected to a randomized mixing of SPs. In such a way, the natural dynamics of the SP 

sequence within each EEG channel was completely destroyed, but the percentage ratio 

between different types of SPs remained the same. This modified EEG was described as 

“random”. 

 

3. Results 

 

3.1. General description of the interictal EEG of epileptics  

 

By using the adaptive classification method, 100% of individual EEG SPs were 

successfully classified. Both the interictal EEG of epileptics and the EEG of the control 

subjects were characterized by alpha-rhythmic SPs which were the most probable in PCPs 

(Fig. 2.A). At the same time, epileptics and control subjects differed from each other 

according to the probability estimation of the occurrence of SP types in PCPs (Fig. 2.B). 

Thus, the interictal EEG of epileptics was characterized by a larger percentage of fast-theta-, 

delta–fast-theta–alpha-, delta–slow-alpha-, fast-theta–fast-alpha-, and fast-alpha- rhythmic 

segments when compared with the control subjects (P < 0.05–P < 0.0001 for different 

channels). By contrast, the EEG of control subjects was described by a larger percentage of 

delta-, delta–slow-theta-, slow-theta-, delta–theta–slow-alpha-, delta–fast-alpha-, theta–slow-

alpha-, and slow-alpha- rhythmic segments when compared with the interictal EEG of 

epileptics (P < 0.05–P < 0.0001 for different channels) (Fig. 2.B). In general, it can be seen 

that the interictal EEG of epileptics has more segments with faster frequencies of each brain 

oscillation than the EEG of control subjects.  
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The spatial distribution of SPs was generally consistent with that revealed in earlier 

studies. Thus, a significant (P < 0.05–P < 0.001) increase for alpha- and decrease for delta- 

and theta-rhythmic EEG segments in frontal-to-occipital direction was observed (Fig. 2.A). 

At the same time, temporal, central, and anterior cortical areas demonstrated the highest 

number of statistically significant differences in SPs relative presence in PCPs (mentioned 

above) between epileptics and control subjects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Probability-classification profiles (A), and composition of brain oscillations 
(indexed by spectral patterns) (B) typical for interictal EEG of epileptics and EEG of 
control subjects (averaged across subjects and all 1-min EEGs). 
For (A): O2 = occipital, P4 = parietal, C4 = central, and F4 = frontal EEG channels placed at 
the right hemisphere of the brain. The x-axis displays the labels (numbers) of the standard 
spectral patterns (SP) from 1 to 32 and their main frequency peaks. The y-axis displays the 
share of the corresponding SPs out of the total number of classified SPs in percentage. A line 
graphic was chosen instead of a bar for ease of comparison. (Note that the x-axis consists of 
32 discrete values, all the in-between values are meaningless). For (B): C = control EEG; E = 
epileptic EEG; “Rhythm” column represents brain oscillations; “Frequency” column marks 
frequency of the main peaks for each SP type; “EEG channels” column represents EEG 
channels for which C > E and/or C < E condition was fulfilled; “–“ = given SP did not exist.  
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Additionally, the interictal EEG of epileptics was characterized by more polyrhythmic 

spectra (see Methods) than the EEG of control subjects (27% vs 14% of EEG segments, 

averaged across channels, P < 0.0001) (Fig. 3A). Both groups showed more polyrhythmic 

SPs in anterior sites than in posterior areas. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Number of polyrhythmic spectral patterns (in % from the total number of 
spectral patterns in EEG) (A), and index of non-stability of probability-classification 
profiles (B) for interictal EEG of epileptics and EEG of control subjects (averaged across 
subjects and all 1-min EEGs separately for each EEG channel). Insertion illustrates the same, 
but averaged across subjects, all 1-min EEGs, and all EEG channels.  
C = control EEG; E = epileptic EEG; *** = P < 0.0001; **** = P < 0.00003 

 

Both the interictal EEG of epileptics and the EEG of control subjects showed a similar 

diversity of SP types in PCPs (indexed by NHCP, see Methods) (Table 1). Diversity for 

different channels varied in the range of 26 - 41% (for control subjects) and 27 - 34% (for 

epileptics). The least diversity was observed in the posterior part of the brain. There was a 
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specific SP set in each channel or small group of channels, because the diversity of SP types 

in all channels taken together was substantially larger (69±1.9% for control, and 61±4.9% for 

epileptics) than in each individual channel for both epileptics and control subjects (P < 0.001 

– P < 0.0001) (Table 1). However, this index was higher for control subjects than for 

epileptics (P < 0.001), reflecting a lower SP-type variability among EEG channels in the 

interictal EEG of epileptics. If the SP types which occurred in less than 2% of cases are not 

taken into account, then this value decreases to 28±2.0% (for control), and 21±2.0% (for 

epileptics) (these were significantly larger for the controls than the epileptics, P < 0.001, 

Table 1). This indicates that more than half of SP types occur very rarely; i.e., not more than 

2-3 times per 149 analysis epochs in a 1-minute EEG. 
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The non-stability of PCPs (indexed by NSCP, see Methods) was significantly higher for 

the interictal EEG of epileptics than the EEG of the control subjects (P < 0.00003) (Fig. 3.B). 

 

3.2. Dynamics of temporal stabilization of the spectral patterns in the interictal EEG of 

epileptics 

 

Since the averaged power spectrum (often used in clinical practice) constitutes a ‘static’ 

picture which eliminates dynamic aspects of EEG organization, its temporal characteristics 

remain a mystery. Hence, the purpose of this section is to study the dynamics of the temporal 

characteristics of the SPs in the interictal EEG. 

 

3.2.1. General description of spectral pattern type variability 

The interictal EEG of epileptics demonstrated a less relative incidence of the SP type 

change in the transition between neighboring EEG epochs of the same EEG than in the EEG 

of the control subjects (P < 0.0001) (Table 2). This means that the interictal EEG has less 

frequent changes in the type of SPs (see periods of temporal stabilization of SPs below). The 

posterior and anterior regions of the brain demonstrated the largest difference of this index 

between the interictal EEG and EEG of control subjects. 
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These data refer to the level of variability of SPs in the neighboring epochs which 

overlapped by 80% (see Methods). It would be expected that where the epochs overlap to a 

lesser extent (until they converge completely in time), the variability in type of SPs should 

increase to a certain value which is characterized by a stochastic level of the incidence of the 

SP type change. In order to find the value of the relative rate of SP stochastic alternation in 

the actual EEG, we used a “random” EEG (EEG where the natural dynamics of SP sequence 

within each EEG channel was completely destroyed but the percentage ratio between 

different types of SPs remained the same). Thus, the relative rate of the SP type alternation 

from the first and to the last interepoch shifts in “random” EEG was 0.825±0.007 (Table 3). 

This value presents an estimation of the maximum possible rate of relative alteration in the 

type of SPs for a given EEG. They testify the attenuation of mutual SPs determination 

between the neighboring EEG analysis epochs. 

 

 

 

 

 

 

 

 

 

Table 3 presents the average values of the relative SP alternation rate in the EEG 

(interictal, control, and “random”) for different shifts between the initial moments of the 

analyzed epochs (256 points). The maximum rate of change in the SP type was reached at the 

shift in 300 points for both interictal and control EEGs. This rate remains constant when the 

time interval between the epochs is increased. At the same time, both the interictal EEG of 

epileptics and the EEG of control subjects significantly differed from a “random” EEG (P < 

0.00003), and the values of this index were significantly smaller for the interictal EEG than 

the control EEG for all shifts (P < 0.05). Thus, the deterministic influence of the SPs of the 

neighboring analysis epochs on each other was absent for “random” EEG, was medium for 

the EEG of the control subjects, and was maximal for the interictal EEG of epileptics. 
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3.2.2. The dynamics of temporal stabilization of spectral patterns in local EEGs 

The temporal stabilization of SP types was evaluated by computing the average number 

(for all EEG channels) of successive m EEG epochs of the same SP type (including 

polyrhythmic spectra – the type “0”) where m is the range from 1 to 149, and was then 

described as a “block”. In this case the particular block length reflects the particular period of 

temporal stabilization of brain oscillations. The results of this analysis for EEG are 

summarized in Figure 4. 

 
Figure 4. The average number (for all EEG channels, n = 16) of successive m EEG 
epochs of the same SP type (including polyrhythmic spectra) (the y-axis), where m is the 
range from 1 to 149 (the x-axis). The values are presented as a percentage of the total number 
of the epochs in all EEGs, for 6 epileptics (n = 2682) and for 7 control subjects (n = 2086).  
“Random EEG” = EEG which natural sequence of spectral pattern types has been completely 
removed in each individual channel. 
 

 

The effect of the temporal stabilization of SPs in both the interictal EEG of epileptics 

and the EEG of control subjects was similar, demonstrating a common characteristic: this 

index decreased as the length of block increased. At the same time, the control EEG was 

characterized by greater index values for small periods of temporal stabilization (P < 0.001–

P < 0.000001 for different block lengths) and smaller index values for large periods of 
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temporal stabilization (P < 0.003–P < 0.000001 for different block lengths) when compared 

with the interictal EEG (Fig. 4). 

However, it is obvious that even in the absence of any correlation between the EEG SPs, 

there should be a temporary stochastic stabilization of the SPs, which may reflect merely 

occasional combinations of SP types. As control for the neural origin of temporal dynamics 

of SPs, “random” EEG (an EEG with a random mix of different SP types separately for each 

channel) was used. From Figure 4, it can be seen that the actual EEG data substantially 

differed from the “random EEG”. An excessive increase in the number of blocks of length 1 

for “random EEG” may indicate a stochastic process. 

It should be noted that the analysis presented above could not reveal the dependence 

between the periods of temporal stabilization and the type of SPs. In other words, does 

specific type of brain oscillations (in terms of SPs) maintain a particular period of temporal 

stabilization? Therefore, we analyzed the maximum periods of temporal stabilization for all 

SP types which were found in PCPs for the interictal EEG of epileptics and the EEG of 

control subjects (Fig. 5.A). The maximum periods of temporal stabilization for SP types 

presented in Figure 5.A as block length were recalculated in time-scale. This analysis showed 

that the brain “maintains” the stabilization period of neural activity for the interictal EEG 

between 3.56 and 5.51 sec (for different SPs), whereas for the control EEG, periods of 

temporal stabilization was shorter: 2.78–4.73 sec (for different SPs). In separate cases, the 

maximum periods of temporal stabilization for the interictal EEG reached 34-60 sec. Note 

that for the interictal EEG of epileptics, the largest maximum period of temporal stabilization 

was found for polyrhythmic activity, whereas for the EEG of control subjects, the maximum 

period of temporal stabilization was longest for 10 Hz alpha activity. 

Moreover, for the interictal EEG, all SPs with delta–fast-alpha, fast-theta, fast-theta–

fast-alpha, fast- and bimodal-alpha, and polyrhythmic activity were characterized by longer 

maximum periods of temporal stabilization than for the control EEG (P < 0.05). At the same 

time, for the control EEG, all SPs with delta, delta–theta, theta, delta–alpha, delta–theta–

alpha, theta–alpha, and alpha activity were characterized by longer maximum periods of 

temporal stabilization than for the interictal EEG (P < 0.05) (Fig. 5.A). The duration of such 

periods for “random EEG” (an EEG with a random mix of different SP types) was different 

from the actual EEG and reached up to 2.3–2.6 sec (for different SP types) (Fig. 5.A). 

Finally the maximum periods of temporal stabilization (averaged across all SP types and 

EEG channels) were longer for the interictal EEG than for the control EEG (P < 0.01) (Fig. 

5.B). 
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Figure 5. The maximum periods of temporal stabilization: (A) for all spectral pattern 
types, which were found in the EEG probability-classification profiles. The x-axis displays 
the labels (numbers) of the EEG spectral patterns (SP) corresponding to the standard SP set 
(including polyrhythmic spectra – type “0”). The y-axis displays the maximum periods of 
temporal stabilization for each SP types (in terms of block length – m EEG epochs follow in 
succession without SP type change, where m is the range from 1 to 149). Data averaged 
across all subjects and all EEG channels. Horizontal dotted line bar represents random range 
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of the maximum periods of temporal stabilization for “Random EEG” (EEG whose natural 
sequence of spectral pattern types has been completely removed in each individual channel); 
(B) for all EEG channels. Data averaged across all subjects and all SP types observed in the 
EEG probability-classification profiles. In the insertion the maximum periods of temporal 
stabilization averaged across all subjects, all SP types, and all EEG channels are presented. 
C = control EEG; E = epileptic EEG; ** = P < 0.01; 
 

 
4. Discussion 

 
In spite of the fact that the interictal EEGs in this study had no visible signs of 

epileptiform activity, the use of probability-classification analysis of the individual SPs 

enabled us to identify the number of differences in microstructural organization of the 

interictal EEG from the EEG of the control subjects. These differences support our 

hypothesis that epileptic brain should have characteristic differences from the intact brain 

even in the interictal period.  

 

4.1. Composition of multiple brain oscillations in interictal EEG 
 

In general, although the compositions of brain oscillations were similar for both the 

interictal EEG of epileptics and the EEG of control subjects, the brain oscillations in the 

interictal EEG were characterized by faster frequencies than in the control EEG (Fig. 2). This 

finding may reflect chronic epileptization of the brain (Hooshmand et al., 1980; Brumback 

and Staton, 1981; Yaari and Beck, 2002). In terms of its relevance to epileptogenesis, 

increased neuronal activity changes the ionic environment of neurons (Heinemann et al., 

1986) that can lead to increased burst firing of neurons (Jensen et al., 1994). The observed 

shift towards higher frequencies of alpha activity in the interictal EEG (this present study) 

reflects increased activation and an excitation of neuronal ensembles (Knyazeva and 

Vildavskii, 1986). At the same time, the interictal EEG demonstrated a marked decrease in 

the percent of delta- and delta–theta-rhythmic segments (Fig. 2), thus confirming the fact that 

a decrease in slow brain oscillations is the most frequent and specific sign of EEG during 

brain dysfunction (Coutin-Churchmana et al, 2003). According to Coutin-Churchmana et al., 

(2003) both a decrease in slow and an increase in fast activity closely correspond with data 

from anatomic and functional neuroimaging studies, which report both atrophy and increased 

metabolism in different areas of brain with dysfunctions. Indeed, the characteristic circuit 

abnormalities during epilepsy include a drop out of neurons, a simplification of the dendritic 
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tree (reduced synaptic input), an increase in the number of excitatory-excitatory feedback 

connections, and increase in glial cell elements (Sackellares et al., 1999).  

A significant decrease in slow brain oscillations observed in the present study 

contradicts earlier research which demonstrated the presence of regional slow-wave activity 

in interictal EEG (Gastaut et al., 1985; Koutroumanidis et al., 1998; Massa et al., 2001). This 

finding of these authors may be due to several reasons: (a) the subjects used anticonvulsant 

medication; (b) the regional slow-wave activity may be a consequence of structural brain 

pathology (for example lesions), and (c) researchers used averaged spectral analysis where 

the frequency bands were predefined and taken in isolation from each other. 

This present study demonstrated that the number of EEG segments with polyrhythmic 

activity was larger in the interictal EEG than the control EEG. This finding is consistent with 

the results of our previous study, where we reported that different pathologies of the brain 

were characterized by increased percent of EEG segments with polyrhythmic activity 

(Fingelkurts et al., 2000). It seems that some (small) percent of polyrhythmic activity always 

exists in healthy EEG (Fingelkurts et al., 2002; 2003a; 2004), and pathological processes 

cause its elevation (Grindel, 1973; Fingelkurts et al., 2000). In this study, a relatively high 

percentage of polyrhythmic activity in the interictal EEG (up to 27%) may reflect 

neurodynamic transitions of the same type independently from the nature of ongoing activity. 

It seems that polyrhythmic activity is necessary to maintain a high level of activity in 

neuronal networks for sustained periods of time (Gutkin et al., 2001). The fact that the 

frequency spectrum becomes increasingly peaked as the system approaches a change of state 

(Lopes da Silva, 1991; Sampson, 2002) suggests that the amount of polyrhythmic activity 

would increase while approaching the seizure. If this idea is correct, and considering that 

stochastic resonance is an important mechanism here by which very small signals can be 

amplified and emerge from the random noise of physiological oscillations (Torres and Ruiz, 

1996), we can speculate further that the increased percent of polyrhythmic activity would 

increase the probability of seizure.  

Similarly to polyrhythmic SPs, there is some optimal level of diversity of SP types in 

PCPs (Fingelkurts et al., 2002; 2003a; 2004) which may increase or decrease depending on 

the type of pathology (Fingelkurts et al., 2000). In the present study, the diversity of SP types 

was smaller (non-significantly) in the interictal EEG of epileptics than in the EEG of the 

control subjects (Table 1). At the same time, the stability of PCPs for interictal EEG was 

significantly reduced when compared with the control EEG (Fig. 3.B). 
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When taken together, all these findings suggest a chaotization (but not randomization) 

process in interictal EEG of epileptics: an increased amount of polyrhythmic disorganized 

activity, a decreased diversity of SPs in PCPs, and a reduced stability of PCPs. This idea is 

supported by the fact that interictal period represents a relatively less orderly state with 

multiple frequencies, and the chaotic behavior of the signal (Bergey and Franaszczuk, 2001).  

 

4.2. Distributed property of brain oscillations in interictal EEG 

 

The temporal, central, and anterior cortical areas demonstrated the highest number of 

statistically significant differences in SPs relative presence in PCPs between the epileptics 

and control subjects (Fig.2). Because the main differences described in this paper have been 

observed in several cortical regions, it appears that the distributed neuronal networks were 

involved in epileptization process. This result is in agreement with other studies presenting 

evidence for the involvement of different distant brain areas in the epileptogenic process (Le 

Van Quyen et al., 1997, 2000; Mormann et al., 2003; Fogarasi et al., 2003; Vadlamudi et al., 

2004). Perhaps the distributed delta, theta, and alpha oscillatory systems observed in the 

present study act as resonant communication networks through large populations of neurons 

(for the review, see Basar et al., 2001). Another finding of the present study which supports 

the distributed effect of epileptization process in interictal EEG, was a reduced SP type 

variability among EEG channels in the interictal EEG of epileptics when compared with the 

EEG of control subjects (Table. 1). This means that the interictal EEG was characterized by a 

more homogeneous topological pattern than the control EEG. This finding is consistent with 

the loss of spatio-temporal complexity in the interictal EEG (Weber et al., 1998; 

Bhattacharya, 2000) that suggests that there are spatially more dependent functional 

processes active in the epileptic brain than in the healthy brain. 

The converging results of this section suggest that epilepsy can be conceptualized as a 

dysfunction in distributed neural circuits, rather than local focal changes. 

 

4.3. Temporal dynamics of brain oscillations in interictal EEG 

 

A single EEG spectrum illustrates the particular integral dynamics of tens and hundreds 

of thousands of neurons in a given cortical area at a particular point in time (Dumermuth and 

Molinari, 1987). Therefore, the absence of variance of a single spectrum during several 

analyzed epochs proves that in a given cortical area the same macro-regimen of neuronal 
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pool activity is maintained during that period. This phenomenon of a temporal stabilization 

may be explained by the stabilization of oscillatory patterns in the brain. In the present study, 

the interictal EEG was characterized by longer periods of SP temporal stabilization than in 

the control EEG (Fig. 4, Fig. 5). This was determined by concrete parameters in the lifetime 

of each of the SP type: Thus, the interictal EEG of epileptics demonstrated (a) a less relative 

incidence of the SP type change in the transition between neighboring epochs of the same 

EEG when compared with EEG of the control subjects (Table 2); and (b) a lower maximum 

rate of change in the SP type (for all shifts) when compared with the control EEG (Table 3). 

It seems that the interictal EEG has high deterministic influence of the SPs of the 

neighboring analysis epochs on each other. Perhaps, increased stabilization periods of SPs in 

the interictal EEG indicate that the brain’s operations completed less dynamically and that 

there exists a transition to a less differential organization of spectral relations, where neural 

elements become less independent and are able to function as united informational channels 

(Lindsley, 1961). All these may suggest a reduction of brain information processing. 

Furthermore, the maximum period of SP temporary stabilization depended on the type 

of dominant frequency. Thus, for the interictal EEG of epileptics, the maximum period of 

temporal stabilization was found for polyrhythmic activity, whereas for the EEG of the 

control subjects, the maximum period of temporal stabilization was observed for 10 Hz alpha 

activity (Fig. 5.A). This finding is consistent with our previous study (Fingelkurts, 1998) 

where we demonstrated that the normally functioning brain is characterized by temporal 

stabilization of dominant alpha-activity (~10 Hz), whereas the temporal stabilization of 

polyrhythmic activity is typical for pathological processes. Stabilization of alpha activity as 

“building blocks” was demonstrated also earlier in the work of Lehman and Koenig (1997).   

When taken together, the analysis of the different indices presented in this section show 

various (but converging) aspects of the temporal dynamics of variability in SP types. Note 

that all these estimations differed significantly in the “random EEG” (EEG whose natural 

sequence of SP type has been completely removed in each individual channel). This means 

that the temporal stabilization of the main dynamic parameters of neuronal activity observed 

in the present study had a non-occasional character. 

Before coming to the final conclusions, an alternative explanation for the distributed 

phenomena of brain oscillations discussed in Section 4.2 should be considered. It could be 

suggested that these results may be attributed to the EEG recording with a linked ear 

reference electrode or volume conduction. This explanation seems unlikely for the following 

reasons: (a) the occipital and frontal regions clearly showed different accentuations in their 
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EEG effects; (b) the analysis revealed that each EEG channel or small group of channels had 

its own specific SP set (see Results), and (c) it was shown that there is little effect of volume 

conduction on the shape of the spectrum below about 25 Hz and spatial filtering is significant 

only for frequencies above the major rhythms (Robinson et al., 2001). 

 

The findings of the present study that the interictal EEG was characterized by (a) a shift 

towards higher frequencies in all observed brain oscillations in distributed neuronal 

networks, (b) an increased amount of polyrhythmic disorganized activity, (c) a decrease in 

SP types diversity, (d) a decreased relative incidence of the SP type change in the transition 

between neighboring EEG epochs of the same EEG, (e) an increased temporal stabilization 

of periods of polyrhythmic activity, may suggest a chaotization of neurodynamics in 

epileptics. At the same time, the fact that all these indices were significantly different from 

“random” EEG reflects a non-occasional and thus, most likely, an adaptive nature of the 

microstructural reorganization of interictal EEG.  

 

4.4. Theoretical considerations 

 

Based on the functional significance of individual SPs (Dumermuth and Molinari, 1987; 

Kaplan 1998; Fingelkurts et al., 2003b; 2005, in press), the type of SP may represent a 

particular oscillatory state of neurodynamics in a given cortical area. If this is the case, then 

the diversity of SP types represents the range of the probable states in this area. Each such 

state (indexed by SP type) is determined by a fixed level of relatively stable functioning for a 

particular period of time (periods of SP temporal stabilization). It was demonstrated that the 

brain has mechanisms which determine variations in the level of relatively stable functioning 

of cortex areas within the range of their probable states (Fingelkurts et al., 2003a,b). 

Parameters of the lifetime of each of the SP type and of their diversity determine these 

mechanisms. Considering that physiological activity of local cortex regions depends on their 

states, one can speculate that depending on the “position” in the state-continuum which can 

be “occupied” by a particular cortex region, the peculiarities of compensation of local 

changes in the current state within this continuum is determined. Thus, during epilepsy, 

cortical areas were characterized by decreased repertoire of the probable states (reduction of 

the number of SP types in interictal EEGs). This represents the increased rigidity in the brain 

activity. Among all oscillatory states observed for epilepsy in the present study, a 

polyrhythmic state had the largest period of relatively stable functioning. 
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4.5. Concluding remarks 

 

When taken together, the findings of the present study lead to the conclusion that the 

peculiarities of the microstructural organization of the interictal EEG without the signs of 

epileptiform activity reflect the natural adaptive reorganization of this microstructure. This 

reorganization is expressed in the physiological limits of the brain and manifests itself in 

metastable settling around new homeostatic levels. This metastable state of epileptic brain is 

a background (or field of action) for ictogenesis. In such a way, the actual decrease of 

epileptiform activity threshold is the natural result of preceding successive changes in brain 

dynamics.  

Further study with a larger number of patients is required to quantify the specificity and 

the relationship between the findings of this study and different subtypes of epilepsy.  

In this study we examined the neurodynamics in local interictal EEGs. Further research 

is needed in order to assess the integrative neurodynamics in the interictal EEG where the 

metastability of the epileptic brain can be estimated directly (Fingelkurts et al., in 

preparation).   

 

The practical implications of the present study for epileptic patients are that (a) 

parameters of interictal EEG without the signs of epileptiform activity can be considered as 

additional information in premorbid diagnostics of epistatus; (b) new approaches to the 

diagnosis and treatment of epilepsy could be suggested, and (c) a therapeutic intervention 

could aim to restore the actual composition of brain oscillations and their temporal behavior, 

similar to those of the normal EEG. 
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