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Abstract 
In the present explorative experimental study, we examined the diversity of 
electroencephalographic (EEG) short-term spectral patterns (SPs) within a broad frequency 
band (1.5-30 Hz) for healthy adult subjects during closed eyes and open eyes resting 
conditions. The types of EEG SPs were assessed by counting all identical SPs with peaks in 
the same frequency bins from the pools of SPs, which were built from all the SPs of the entire 
EEG signal (all locations) for all subjects separately for closed and open eyes conditions. 
This study demonstrated that independently of the resting functional state of the brain (closed 
eyes vs open eyes) (a) the diversity of short-term EEG SP types was limited, (b) the percent 
distribution of SP types among different categories of SPs (based on morphology of SPs) was 
constant and (c) the most preferred frequencies were restricted to delta-theta and alpha bands. 
At the same time, closed eyes and open eyes conditions differed from each other by the 
percent distribution of different types of SPs. The probabilities for the occurrence of 
particular SP types were typical for each of the examined conditions with domination of 
alpha-rhythmical SPs during closed eyes condition and domination of delta-theta-rhythmical 
SPs during open eyes condition. The findings suggest that the diversity of SPs varies as a 
function of functional state of the brain during resting conditions. Understanding of the 
diversity of short-term EEG SP types is important theoretically and practically, and is 
significant for advancing the interpretation of the EEG signal. 
 
Keywords: Electroencephalogram (EEG), Multiple EEG oscillations, Short-term spectral 
patterns, Resting conditions. 
 
 
 
1. Introduction 
 
Currently there is common agreement in the field of cognitive neuroscience that ongoing 

spontaneous activity at the cortical level (electroencephalogram – EEG) does indeed reflect 

conditions, functional properties and global states of brain functioning and is closely 

connected to information processing and cognitive activity (Corsi-Cabrera et al., 1989; Arieli 

et al., 1996; Tsodyks et al., 1999; Nunez, 2000; Bressler and Keslo, 2001; Leopold et al., 

2003; also see review Fingelkurts and Fingelkurts, 2001). Ongoing brain activity is 
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characterised by numerous neuronal oscillations. They are the basis of many different 

behavioural patterns and sensory mechanisms (Miller and Schreiner, 2000; Steriade, 2000). 

Brain oscillations in neural networks have been intensively studied over the past years: Basar 

et al. (1999, 2000; 2004), Klimesch (1996, 1999a,b, 2003), Klimesch et al. (2005), 

Fingelkurts et al. (2002, 2003a,b, 2004, 2006a), just to mentioned a few. As a result of this 

research, it is suggested that the oscillatory activity of neuronal pools reflected in 

characteristic EEG rhythms constitutes a mechanism by which the brain can regulate changes 

of a state in selected neuronal networks to cause qualitative transitions between modes of 

information processing (Lopes Da Silva, 1996). Different oscillatory patterns may be 

indicative of different information processing states, and it has been proposed that the 

oscillatory patterns play an active role in these states (Bhattacharya, 2001; Lakatos et al., 

2005). 

Spectral decomposition, to this day, still remains the main analytical paradigm for analysis of 

brain oscillations. The power spectral density (power spectrum) reflects the “frequency 

content” of the signal or the distribution of signal power over frequencies. Additionally, 

power spectrum is a compact and natural representation of steady state of neural activity 

(Dumermuth and Molinari, 1987). The comparison of absolute and relative changes in 

frequency bands of the power spectrum has revealed important information about the 

electrical activity of the brain and its relationship to human behaviour (Muthuswamy and 

Thakor, 1998). 

However, conventional spectral analysis assesses the mean characteristics of the EEG power 

spectra averaged out over extended periods of time and/or broad frequency bands in order to 

obtain statistically reliable characteristics. In that case, averaging procedures (resulting in a 

“static” picture) might not only mask the original signal dynamic aspects, but also give rise to 

ambiguous data interpretation (Effern et al., 2000; Laskaris and Ioannides, 2001; Fingelkurts 

et al., 2002). In fact, and as explored in our early work (Fingelkurts et al., 2003a; Fingelkurts 

et al., 2004) the total power spectrum does not characterise each of the individual power 

spectra for each EEG segment. 

Additionally, the frequency bands are predefined and taken in isolation from each other in the 

vast majority of EEG studies. This does not permit researchers to examine behaviour of the 

actual/natural composition of brain oscillations involved. At the same time, brain functioning 
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is represented by multiple oscillations (Basar et al, 2000). According to the superposition 

principle introduced by Basar et al. (1999), brain activity is accompanied by superimposed 

multiple brain oscillations in many frequency bands (for the review, see Basar et al., 2004). 

In order to overcome the limitations of conventional spectral analysis based on averaging 

procedures and to reveal functionality in EEG spectral variability, short-term spectral analysis 

was introduced (Bodenstein and Praetorius, 1977; Priestley, 1981; Barlow, 1985; Bodunov, 

1985; Jansen and Cheng, 1988; Hilfiker and Egli, 1992; for current development see 

Fingelkurts et al., 2003a,b, 2006a). 

Assuming that the duration of the stationary segments of spontaneous EEG is not usually 

more than 2 sec (McEwen and Anderson, 1975; Barlow, 1985; Inouye et al., 1995) it is 

possible to get a whole set of individual short-term spectra of various types in accordance 

with the number of stationary EEG segments. In our previous studies (Fingelkurts et al., 

2003a,b) it was shown that a limited number (up to 14 ± 0.6) of spectral pattern (SP) types 

may describe an EEG accurately. However, only about half of all SP types are functionally 

active: the occurrence of these SP types changed along with alterations in the functional state 

of the brain (Fingelkurts et al., 2003a). Each EEG channel or small group of channels is 

characterised by a relatively specific set of SP types. Additionally, it was shown that SP types 

are of different significance: usually, 3-5 SP types were the most probable when compared 

with the others for particular state, condition or task. The occurrence of the most probable SP 

types is not occasional and may have a functional nature. For the details of the SP variability 

in ongoing EEG activity during resting conditions and cognitive tasks see Fingelkurts et al. 

(2003a,b). 

All of these findings possess distinct trait-like qualities (Fingelkurts et al., 2006a) as indicated 

by (a) high within-subject stability over EEG recordings, (b) high reliability over time and (c) 

high specificity for each of the examined conditions.  

However, systematic detail description of the diversity of EEG short-term SP types has not 

been examined yet. By diversity we mean a multitude of SPs where each SP type differs from 

another by its morphology (the number of dominant peaks and peak(s) broadness) and by 

position of dominant peak(s) at the frequency bins from given frequency range within a given 

functional state of the brain. Theoretically, within each SP the dominant peak may occupy 

any frequency bin from a given frequency range. Additionally, the number of dominant peaks 
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may vary significantly. Whether all possible types of SPs have occurred in the actual EEG or 

some SP types are missing within a given functional state of the brain is largely unknown. It 

is of further interest to study whether there is equal occurrence of each of SP type and which 

SP types are dominant for a given functional state. Finally, an important but unaddressed 

issue is whether diversity of SPs changes with the change of a functional state of the brain.  

Due to extensive use of EEG (and power spectra in particular) for research and clinical 

purposes it is important to fill these gaps with empirical data. It appears that as a 

neurophysiological phenomenon EEG has its own peculiarities, regularities and rules of 

organization (Nunez, 2000; Fingelkurts et al., 2003a,b). Only when one knows these 

characteristics, it is possible to make proper use of EEG as a tool and to give adequate 

interpretations of the obtained data. In fact, it is impossible to design a cognitive EEG 

experiment not biased by assumptions (explicit or implicit) about brain dynamics. In 

connection to this, a much deeper understanding of brain dynamics which is reflected in EEG 

is essential to genuine long-term progress in psychophysiological and cognitive sciences. 

Therefore, the current paper is important as an explorative data-driven study that may help 

scientists to find new directions in research and to generate new hypotheses regarding 

structural aspects of the signal which is usually sparse in EEG literature. 

Taking together all of the aforementioned, the objective of this work was to describe in detail 

the “morphology” of EEG short-term SPs, the diversity of SP types and to examine what the 

limits of this diversity are. Therefore, the concrete aim of the present study was to evaluate 

the diversity of EEG short-term SPs within a broad frequency range (1.5-30 Hz) for healthy 

adult subjects during resting conditions (closed and open eyes). The eyes closed and eyes 

open conditions are often regarded as baseline conditions with the lowest levels of arousal 

accessible in the laboratory. As there is data on how SP morphology depends on 

neurophysiological parameters and nonlinear measures (Inouye et al., 1991; Pereda et al., 

1999; Tirsch et al, 2000; Quian Quiroga et al, 2001; David and Friston, 2003; Perez 

Velazquez and Wennberg, 2004; Zavaglia et al., 2006; Moran et al., 2007), a frequency 

domain approach should reveal which types of states of the underlying neurodynamical 

system (neuronal assembly) are characteristic for a given functional state of the brain. 
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2. Subjects and methods  
 
2.1 Subjects 
 
Twenty-seven healthy, right-handed adult male volunteers (aged 19-33) participated in the 

study. None of the subjects reported any history of brain traumas or concussions, 

neurological or psychiatric disorders, acute or chronic medical illness, or was on medication 

at the time of the EEG registration. In addition, all of them have normal autonomic (blood 

pressure and pulse rate) indices. To capture variability of EEG types (the degree of alpha 

domination) in general population, 16 subjects with different EEG types were selected 

randomly from the initial sample in proportion similar to that of the general population 

(Simonova et al., 1967; Stern and Engel, 2004): 19% (3 subjects) with dominant alpha, 50% 

(8 subjects) with subdominant alpha, 25% (4 subjects) with little alpha and 6% (1 subject) 

with no alpha. Such a sample is known as a stratified random sample (Kalton, 1983). The 

degree of alpha domination in EEG was determined in resting condition with closed eyes. 

These 16 selected subjects (aged 19-26) who did not differ significantly from the initial 

sample were taken for further analysis.  

Women were excluded from the study for the following reasons: (a) there are no differences 

in spectral composition of EEG between males and females (Horita et al., 1995) and there are 

no studies which would demonstrate such differences, therefore one gender may be used for 

the first study of the diversity of EEG SPs; (b) female’s EEG is highly affected by phases of 

menstrual cycle (variations of estrogen and progesterone levels) and hormonal contraceptives 

(Becker et al., 1982; Solıs-Ortiz et al., 1994; Smith et al., 2002), therefore the diversity of 

EEG SPs in females (preferably for each phase of the menstrual cycle) should be examined in 

a separate study. 

All the subjects were informed beforehand of the nature of the procedure. Written, informed 

consent from all subjects and institutional ethical committee approval were obtained prior to 

the experiment. 

Since alcohol influences variation of normal EEG (Propping et al., 1980), subjects were 

asked to abstain from alcohol for 2 days before EEG registration. To control variation due to 

food intake, participants were asked to have breakfast with two slices of toast, jelly and 

orange juice, and were instructed to avoid caffeine for 12 h prior to the recordings. The EEG 

registrations began at 10:00 a.m.  
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2.2. Procedure and data acquisition 
 
EEG was recorded using a Mitsar 21 channel EEG system (Mitsar, Ltd). Eight Ag/AgCl 

electrodes were placed bilaterally on the subject's scalp using the 10/20 International System 

of electrode placement at O1, O2, P3, P4, C3, C4, F3 and F4 (minimum number to cover the 

main cortical lobes). Vertical and horizontal electro-oculograms were recorded. All 

electrodes were referred to linked ears (linked-ears reference was obtained digitally from two 

separate, impedance-checked channels). Raw EEG signals were amplified and filtered in 1.5-

30 frequency range and digitized at a sampling rate of 128 Hz by a 12-bit analog-to-digital 

converter with resolution of 1µV/bit. This frequency range was chosen because 

approximately 98% of spectral power lies within these limits (Thatcher, 2001). Even though 

frequencies above 30 Hz (gamma band) have been proposed to be functionally informative, 

there are a number of methodological issues which lead us to exclude frequencies above 30 

Hz from the present analysis: (a) it was shown, that there is little effect of volume conduction 

on the shape of the spectrum below about 25 Hz and spatial filtering is significant only for 

frequencies above 25 Hz (Robinson et al., 2001); (b) high-frequency spindles have very low 

signal-to-noise ratio, what results in considerable contamination of gamma band by noise; (c) 

dynamics of high-frequency responses may be a trivial by-product of power changes in lower 

frequencies (Pulvermuller et al., 1995), (d) the increased power in the gamma range may be 

due to harmonics of activity in lower frequency ranges, and/or due to ringing of filters by 

EEG spikes recurring at theta rates (Freeman, 2003), (e) gamma band may be an artifact of 

(un)conscious micro-constrictions of muscles of the organism and/or face muscles (Whitham 

et al., 2007; Yuval-Greenberg et al., 2008; Ball et al., 2008); (f) comprising only 2% of 

spectral power (Thatcher, 2001), contribution of high-frequency band into spectrum cannot 

be significant; (g) Bullock et al (2003) demonstrated many “good” rhythms in the 2-25 Hz 

range which were mainly sinusoidal, but did not find them in 30-50 Hz band. Considering all 

of these, there might be difficulties in the meaningful interpretation of effects in high-

frequency band regardless of how powerful or statistically significant they are.  

DC drifts were removed using high pass filters (1.5 Hz cut-off). The impedance of the 

recording electrodes was always below 5 k. After the electrodes were placed on the 

subject’s head and the instrument calibrated, the subject was seated in a comfortable chair in 

a registration room and the procedure was explained. To reduce muscular artefacts in the 
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EEG signal, the subject was instructed to assume a comfortable position and to avoid 

movement.  

Instructions designed to minimize movement and relax jaw muscles resulted in suppression 

of the myogram class of artefact to the point that the high-frequency spectrum was not 

significantly affected. A subject was instructed also to look straight in front of him (in both 

closed and open eyes conditions) and to avoid unnecessary eye movements. The presence of 

an adequate EEG signal was determined by visual inspection of the raw signal on the 

computer screen. Constant visual EEG monitoring allowed for selection of only artefact-free 

EEG recordings for further analysis.  

For each subject ten 8-channel one-minute EEGs were recorded randomly during steady 

resting conditions for closed and open eyes separately. Such ongoing EEG activity during 

resting condition reflects current functional state of neuronal masses rather than a random 

process (Livanov 1984; Fingelkurts et al., 2003b). To examine diversity of SPs in EEG, a 

total of 109 (for closed eyes) and 53 (for open eyes) artefact-free one-minute EEGs were 

selected in this study. 

According to literature two one-min EEGs have proven to produce reliable estimates of 

internal consistency (Coan et al., 2001). Moreover, even the duration of 20 sec of EEG epoch 

is sufficient to reduce adequately the variability inherent in the EEG (Gasser et al., 1985). In 

the present study majority of the subjects contributed to EEGs’ pool with 10 one-min EEGs 

(for closed eyes) and 4 one-min EEGs (for open eyes), which is well above the 

aforementioned limits.  

 
2.3. Data processing 
 
Since an EEG is widely referred to as a nonstationary signal with varying characteristics (for 

the review see Fingelkurts and Fingelkurts, 2001), brain oscillations are expected to be 

dynamic in nature. In order to capture such changing dynamics, the data series were divided 

into overlapping windows. Thus, individual power spectra1 were calculated in the range of 

                                                            
1 Log transformation of the power spectra was not used for the following reason: Log transformation usually 
normalizes a power spectrum, but, at the same time, it artificially reduces the contrast of the differences between 
large and small power values. This leads to the increased contribution of the small-amplitude values and 
correspondently, the noise into a total spectrum. For the purpose of this paper “clean” power spectra without 
noise contamination are of great importance. 
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1.5–30 Hz with 0.5-Hz resolution (59 values), using Fast Fourier Transform with a 2-sec 

Hanning window shifted by 50 samples (0.39-sec) for each channel of one-minute EEG (Fig. 

1). According to previous studies, these values have proved to be the most effective for 

revealing oscillatory patterns from the signal.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The scheme of the data processing. Sliding spectral analysis was done separately for each 
subject and each channel of one-min EEG. Gray small numbers under each spectral pattern (SP) 
represent the running number from 1 to 149. Distribution of SPs among SP categories was based on 
morphology of SPs and was performed on pools of SPs for closed and open eyes conditions separately. 
Distribution of the presence of each SP type for category-1 for closed eyes condition is presented. 
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The works which have studied the effect of epoch length on the variability of power spectrum 

(Levy, 1987; Kaplan, 1998) demonstrated that (a) the epoch-to-epoch variability with power 

spectra computed using 2-sec epochs was significantly less than the variability when power 

spectra were computed using longer epoch lengths, and (b) analysis using 2-sec epochs 

identified changes more rapidly than analysis using any longer epoch length, and (c) the 

obtained differences were clinically significant as well. Moreover, a 2-sec epoch is long 

enough to get a reliable estimation of the lowest frequency (0.5 Hz), and is short enough to be 

almost stationary (McEwen and Anderson, 1975; Inouye et al., 1995). Taken together these 

findings suggest that 2-sec epoch lengths are preferable when power spectrum analysis is 

used. According to the work of Kaplan (1998), in which the author studied the effect of 

window shift on disclosing oscillatory patterns from the signal using shifts from 1 to 256 

samples, the window shift in 50 samples was the most effective.  

To summarise, sliding spectral analysis with overlapping segments, previously applied to 

EEG signals (Keidel et al., 1987; Tirsch et al., 1988, 2004; Fingelkurts et al., 2003a,b, 2006a), 

(a) takes the non-stationarity of the time series into account, compensates for the effects of 

windowing, (b) prevents loss of information due to residual activity, (c) reduces random error 

of the mean, (d) increases the effective number of degrees of freedom, and (e) improves the 

statistical confidence in the results due to a relatively large number of SPs (Muller, 1993; 

Riley, 2003). Additionally, using overlapping intervals (which just means a different 

aggregation scheme) cannot add any artifactual information (Muller, 1993). 

As a result, the total number of individual SPs for each channel of one-min EEG was 149. 

Pools of SPs were built from all the SPs of the entire EEG signal (all locations) for all 

subjects separately for closed and open eyes conditions. SPs from all locations were pooled 

together since we were interested in global SP diversity. In each pool (n = 129928 for closed 

eyes and n = 63176 for open eyes), all identical SPs with dominant power peaks (peaks that 

rise significantly above the general average) in the same frequency bins were counted 

automatically. The peak detection was based on normalizing the SP to within-SP relative 

percentages of magnitude, where acceptance is achieved when the peak exceeds a given (60%) 

percent-magnitude, where 100% corresponds to the magnitude of the highest peak within the 

SP. According to the preliminary study, this value has proved to be the most effective for 

peak detection. 



10 

 

Analysis of the SP type diversity revealed that each pool of SPs can be subdivided in 6 

categories based on morphology of SPs (Fig. 1): (1) SPs with only one power peak, which 

occupies any one frequency bin, (2) SPs with only one power peak, which occupies any two 

adjacent frequency bins, (3) SPs with only one power peak, which occupies any three 

adjacent frequency bins, (4) SPs with all possible combinations of two power peaks, (5) SPs 

with all possible combinations of three and more power peaks and (6) unique SPs which are 

not among other categories and each of them has occurred in the pool of SPs only once. As 

explored in our early work (Fingelkurts et al., 2003a), the category of unique SPs is 

comprised of SPs which reflect transitory and/or noisy/disorganised episodes in the EEG.    

These categories may be functional: (a) the number of peaks in the EEG spectrum reflects 

complexity (the number of neuronal assemblies) of the neurodynamical system (David and 

Friston, 2003; Zavaglia et al., 2006) and (b) the sharpness or broadness of the peak in the 

EEG spectrum reflects the degree of (dis)order in the neurodynamical system (Inouye et al., 

1991; Tirsch et al, 2000; Quian Quiroga et al, 2001).  

 
2.4. Statistics 
 
In order to reveal any statistically significant differences in the presence of each SP type in 

EEG between closed eyes and open eyes conditions, the Wilcoxon matched pairs test was 

used. Statistical significance was assumed where P < 0.05. Since only the difference between 

pairs of states was of interest and we intended to assess each variable in its own right, no 

correction for multiple comparisons was necessary (for a detailed discussion, see Rothman, 

1990; Perneger, 1998). Since the absolute number of SP in SP-pools within each condition 

was different, the percentage of the number of SP in SP-pools was calculated. 

 
3. Results 
 
3.1. General description of the diversity of EEG SP types 
 

From figure 2 it can be seen that there were no statistically significant differences in the 

number of SP types in each category between closed and open eyes.  

However, distribution of SP types amongst the six categories was uneven (Fig. 2). Thus, the 

vast majority (42–44%) of all short-term EEG SPs belonged to the category of SPs with only 
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one sharp power peak. Other categories were characterised by considerably smaller number 

of SPs. Both, category of SPs with all possible combinations of two power peaks and 

category of SPs with all possible combinations of three and more power peaks comprised 

about 18% each. The next was the category of SPs with only one power peak, which 

occupied any two adjacent frequency bins (11.20%) followed by the category of unique SPs 

which are not among other categories (7–9%). Finally, the minimum number of SPs belonged 

to the category of SPs with only one power peak, which occupies any three adjacent 

frequency bins (about 2%).   

 

 

 

 

 

 

 

 

 

Figure 2. The pie diagrams representing percent distribution of spectral pattern (SP) types 
among categories of SPs based on morphology of SPs during resting conditions (n = 129928 for 
closed eyes and n = 63176 for open eyes). Different colours reflect the percentage of SP types. 
Examples of SPs for each category are presented in the insertions.  
 

3.2. Detail description of the diversity of EEG SP types within categories of SPs 

Figure 3 summarises a percentage distribution of the number of SPs with one sharp, medium-

sharp, and broad power peak. As can be seen from the figure, the diversity of SP types was 

limited and mainly restricted to delta-theta (1.5–4 Hz) and alpha (8.5–11.5 Hz) frequency 

ranges within which the power peak of SP may occupy any frequency bin (Fig. 3). Notice 

that the closer a SP power peak is to 1.5 Hz or 10 Hz, the higher the percent of SP type in the 

pools of SPs.  
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Figure 3. Percent distribution of spectral pattern (SP) types with one power peak during resting 
conditions. The X-axis displays SP types with one power peak at a particular frequency bin from 1.5 
to 30 frequency range with 0.5 Hz resolution. The Y-axis displays the relative presence of each SP 
type in the percentage from the total number of SP types (n = 129928 for closed eyes and n = 63176 
for open eyes). A line graphic was chosen instead of a bar for the ease of comparison. (Note that X-
axis consists of discrete values, all the in-between values are meaningless).  CE = closed eyes, OE = 
open eyes. Grey frames indicate delta-theta and alpha bands. 
 

Additionally, there was a clear expected difference between closed and open eyes conditions 

(Fig. 3). Thus for all three categories of SP types, closed eyes condition was characterised by 

(a) significantly higher percent (P<0.02–P<0.04) of SPs, the power peak of which occupied 

any frequency bin within 8.5–11.5 Hz frequency range and (b) significantly lower percent 

(P<0.03–P<0.04) of SPs, the power peak of which occupied any frequency bin within 1.5–4 

Hz frequency range, when compared with the open eyes condition (Fig. 3). 
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Figure 4 illustrates the percentage number and distribution of SPs with any two power peaks. 

The largest number of SPs was observed for those which have one power peak fixed at 1.5 

Hz bin and another power peak that could occupy any other frequency bin (Fig. 4, A). The 

number of SPs decreased gradually as fixed frequency of the power peak increased. This was 

a common dynamic for both closed and open eyes conditions. However, for closed eyes 

condition this dynamic took a different direction starting from 7.5 Hz: the number of SPs 

increased gradually as fixed frequency of the power peak increased until 9.5 Hz and then 

decreased again (Fig. 4, A).  

Closed eyes condition was characterised by (a) significantly smaller percent (P<0.05) of SP 

types the power peak of which was fixed at any frequency bin within 1.5-3 Hz frequency 

range and (b) significantly higher percent (P<0.01) of SP types where the power peak was 

fixed at any frequency bin within 5-10.5 Hz frequency range when compared with the open 

eyes condition (Fig. 4, A).  

Analysis of the percentage distribution of the number of SPs within each class (fixed power 

peak at particular frequency bin) revealed a common effect (Fig. 4, B): closed eyes condition 

was characterised by (a) significantly smaller percent (P<0.01–P<0.005, for different classes) 

of SP types, the power peak of which was fixed at particular frequency bin within 1.5–8 Hz 

frequency range and (b) significantly higher percent (P<0.02) of SP types, the power peak of 

which was fixed at particular frequency bin within 8.5–11 Hz frequency range when 

compared with the open eyes condition. 

Table 1 illustrates dynamic repertoire of SP types for closed and open eyes conditions. It can 

be seen that around 39% of all SP types with one and/or two power peaks which described 

alpha band and around 27% of all SP types with one and/or two power peaks which described 

delta-theta band were characteristic for the repertoire of SP types during closed eyes 

condition. Eyes opening resulted in reorganisation of the repertoire of SP types (Table 1). The 

number of all SP types with one and/or two power peaks which described alpha band 

decreased to 13% and the number of all SP types with one and/or two power peaks which 

described delta-theta band increased to 53%. 

Notice that there was not any SP type which described beta frequency range above 12 Hz in 

any SPs’ category during both resting conditions. 
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Figure 4. (A) Percent distribution of classes of spectral pattern (SP) types with two power peaks 
where position of one power peak is fixed at a particular frequency. The X-axis displays classes of SP 
types with two power peaks where position of one power peak is fixed at a particular frequency bin 
from 1.5 to 30 frequency range with 0.5 Hz resolution. The Y-axis displays the relative presence of 
each class of SP types in the percentage from the total number of SP types (n = 129928 for closed 
eyes and n = 63176 for open eyes). A line graphic was chosen instead of a bar for the ease of 
comparison. (Note that X-axis consists of discrete values, all the in-between values are meaningless). 
(B) As an example, percent distribution for each SP type from particular SP classes from (A) is 
presented. Only those SP types percent of the occurrence of which is reached at least 0.5% are 
displayed. The X-axis displays SP types with two power peaks where position of one power peak is 
fixed at a particular frequency bin from 1.5 to 30 frequency range with 0.5 Hz resolution. The Y-axis 
displays the relative presence of each SP type in the percentage from the total number of SP types (n = 
129928 for closed eyes and n = 63176 for open eyes). A line graphic was chosen instead of a bar for 
the ease of comparison. (Note that X-axis consists of discrete values, all the in-between values are 
meaningless). CE = closed eyes, OE = open eyes. Grey frames indicate delta-theta and alpha bands. 
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Table 1. Repertoire of spectral pattern (SP) types for closed and open eyes conditions calculated as

sum of all SP types with one and/or two power peaks which described alpha or delta-theta bands.

 CE CE OE OE
Number of peaks Alpha Delta‐ Alpha Delta‐

Theta Theta

SPs with 1 peak (category1 + category2 + category3) 35.20% 20.30% 12.30% 41.30%
SPs with 2 peaks (category4) 3.38% 6.56% 0.79% 12.50%

Total 38.58% 26.86% 13.09% 53.80%

CE = closed eyes, OE = open eyes  

 

4. Discussion  

4.1. General characteristics of the diversity of EEG short-term SPs 

Analysis of the diversity of EEG short-term SPs for closed and open eyes conditions revealed 

that there is (a) a limited set of categories of SPs based on SP morphology and (b) a stable 

number of SPs which contributes constantly to each category of SPs independently on 

condition (closed vs open eyes) (Fig. 2). This can be interpreted as the brain “operating” by a 

limited number of oscillatory states which are produced by different but limited 

configurations of firing neurons (for the relations between EEG SP and the actual state of the 

neurons in the underlying network, see appendix in Fingelkurts et al., 2006a). This is in line 

with our previous studies (Fingelkurts et al., 2003a,b) where it has been shown that EEG may 

be described accurately by a limited number of SP types, half of which is the same for 

different functional states.  

Considering extensive data on how SP morphology depends on neurophysiological 

parameters and nonlinear measures (Inouye et al., 1991; Pereda et al., 1999; Tirsch et al, 2000; 

Quian Quiroga et al, 2001; David and Friston, 2003; Perez Velazquez and Wennberg, 2004; 

Zavaglia et al., 2006; Moran et al., 2007; to mention just a few), our data on SP morphology 

can be interpreted in terms of states of the underlying neurodynamical system i.e. neuronal 

assembly. Thus, the finding that more than half (up to 57%) of all short-term EEG SPs 

belongs to the category of SPs with only one power peak (Fig. 2) suggests that a short-term 

EEG signal is characterised by individual rhythm (Bullock et al., 2003) which is produced by 

a single neuronal ensemble (David and Friston, 2003; Zavaglia et al., 2006) in a given 

cortical area at a particular point in time. The fact that the majority (up to 44%) of these SPs 



17 

 

have sharp power peak suggests that the underlying neurodynamical system (neuronal 

assembly) is characterised by resonant ordered behaviour with low entropy (Inouye et al., 

1991; Tirsch et al., 2000; Quian Quiroga et al., 2001) in short-term temporal scale. Our data 

confirmed the findings of Bullock et al. (2003) who demonstrated that most oscillations in 

EEG samples have quite narrow peaks. 

Up to 36% of all short-term EEG SPs have two or more sharp power peaks (Fig. 2), thus 

reflecting the activity of two or more neuronal ensembles with resonant ordered behaviour 

within each individual ensemble (Inouye et al., 1991; Tirsch et al, 2000; David and Friston, 

2003). This is in line with the work of Bullock et al. (2003) who demonstrated that power 

spectra usually have 1 to 3 dominant peaks which reflect “true” EEG rhythms.  

And finally, a minority (7–9%) of all short-term EEG SPs belong to a unique category of SPs, 

each of which has occurred in the pool of SPs only once and reflects transitory and/or 

noisy/disorganised episodes in EEG (Dumermuth and Molinari, 1987; Tirsch et al., 2000; 

Fingelkurts et al., 2003a). The ratio of this activity in EEG is influenced by genetic factors 

(Meshkova, 1988) and as explored in our early work (Fingelkurts et al., 2003a, 2004) the 

amount of noisy/disorganized activity in EEG is dependent on functional brain state.  

Notice that different types of SPs within the same or different SP categories are combined 

temporally in a “mosaic” way. Therefore, any of the mentioned above percentages does not 

mean that any single type of SP characterises an EEG continuously, rather these percentages 

signify that a given SP type dominates in EEG only in sum. Such “mosaic” dynamics of SP 

types is consistent with our previous studies (Fingelkurts et al., 2003a,b). 

The described finding supports the idea that the dynamics of an EEG signals reflect a chaotic 

deterministic process with state transitions from “high-dimensional” or disordered to “low-

dimensional” or ordered nonlinear dynamics, and vice versa (Lopes da Silva, 1991; Tirsch et 

al., 2000, 2004).    

The observation that only up to 9% of short-term EEG reflects transitory or 

noisy/disorganised episodes in resting EEG, whereas most of it comprises highly organized 

oscillatory activity is in contradiction with the conclusion by Bullock et al. (2003). These 

authors used a specific tool (Period-Specific-Average) to reveal “true”, as they call it, 

periodicities in the EEG. They concluded that “…most of the power spectrum most of the 

time in most human cortex is without significant rhythms”. Such contradiction may be due 
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the fact that Bullock et al. analysed 4-sec non-overlapping EEG epochs, whereas in the 

present study 2-sec highly overlapping (80%) EEG epochs were used. According to previous 

studies, the values used in our study have proved to be the most effective for revealing 

oscillatory patterns from the signal (Levy, 1987; Kaplan, 1998). Additionally, close analysis 

of the Bullock et al. (2003) article revealed that in spite of their own conclusion the authors 

actually found that “Many EEG samples do show one or more periodicity peaks rising 

to >99% confidence” and that authors “…find many examples of “good” rhythms in the 2-25 

Hz range, and they are chiefly pretty sinusoidal.” Exactly in this frequency range we 

observed the majority of organised/rhythmic SPs in our study. 

Consistently with our previous work (Fingelkurts et al., 2003a,b) only a few SP types were 

the most probable (Fig. 3, Fig. 4,B). Thus, SP types which described delta-theta and alpha 

frequency bands were most probable during resting conditions. The maximums in the percent 

distribution of SP types were at 1.5 Hz (delta activity) and at 10 Hz (alpha activity). This 

means that these two frequencies are the characteristic and preferred frequencies during rest 

with domination around 10 Hz during closed eyes condition and domination around 1.5 Hz 

during open eyes condition.  

Domination of 10 Hz in resting EEG is in line with the works of Stassen (1985) and Thatcher 

et al. (2003) where the authors demonstrated that distribution of the EEG peak frequency in 

the general population has a mean of around 10 Hz. Indeed, in the human brain the alpha 

activity dominates the EEG spectrum (Basar and Guntekin, 2006). An alpha rhythm system is 

expected to play a leading part in organization of conscious interactions with the environment 

(for the review, see Knyazev, 2007) and is associated with semantic memory which is 

enormously developed in humans (Klimesch, 1996, 1999a,b; Sauseng et al., 2005a).  

Domination of delta frequencies (1.5 Hz) in resting EEG is not surprising: delta oscillations 

involved in the acquisition of biologically important goals such as physical maintenance and 

survival and are associated with autonomic functions, such as breathing and heartbeat (for the 

review see Knyazev, 2007). As can be seen from the figures 3 and 4.B delta and theta 

frequency bands were grouped together and “behaved” as one band. Such dependency of 

these two bands can be explained by the fact that sometimes theta oscillation current density 

fluctuated at delta frequencies. Furthermore, it was reported that the highest amplitude theta 

oscillations occurred at a specific phase of the delta oscillation (Lakatos et al., 2005). 

However, in spite of common behaviour of these two bands, short-term EEG epochs in most 
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cases were characterised by dominant peak(s) in only one frequency band (delta or theta) (Fig. 

3 and 4). This may suggest that these two bands are functionally dependent for tested 

conditions (even though their physiological “origin” is different). The observed theta 

frequencies in this study are hypothesised to be associated with the orienting response, short-

term (episodic) memory processes, attention, and emotional regulation (for the review see 

Knyazev, 2007), which can be spontaneously active during resting conditions. Cortical 

activity that is not driven by external stimuli, such as in the present study, may reflect 

processing of internal mental context (top down processing) (von Stein and Sarntheim, 2000).  

Considering that only artefact-free one-minute EEG recordings were taken into analysis 

observed delta-theta activities were not related with artefacts. 

Notice that there was no single SP type which would describe a beta frequency band. This 

means that independent beta rhythm is a less probable oscillation during resting conditions. 

This is consistent with the work of Simon (1977) which found beta frequencies in only 22% 

of normal adults. Well known beta activity visible in averaged power spectrum during rest is 

most likely a result of the contribution of the averaging of the unique SPs which have power 

peaks at beta frequency band along with other peaks at other frequency bands. Additionally, 

beta activity may be characterised by very broadband peak rather than a well defined narrow 

peak. In this case, SPs with this type of peak in the present study would be placed in the 

category of the unique SPs.  

The existence of several morphological categories of SPs with different SP types within each 

category suggests that the alert resting EEG is very much an active state (Fingelkurts et al., 

2003b). As it was demonstrated, during rest the SP types emerge, persist for some time and 

then disappear to be replaced by other SP types (Fingelkurts et al., 2003a). This suggests that 

ongoing brain activity occurs in discontinuous steps and confirms that the cerebral cortex is 

continuously active in wakefulness. This supposition is in line with the works of Thatcher 

and John (1977), Herscovitch (1994), Arieli et al. (1996), Tsodyks et al. (1999), Raichle et al. 

(2001), Raichle and Snyder, (2007) and others who demonstrated a highly organized intrinsic 

functional activity during a resting state i.e., activity which is not directly related to 

identifiable sensory or motor events. For details of the SP variability in ongoing EEG during 

resting conditions see (Fingelkurts et al., 2003a). 
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The frequency of the occurrence of each SP type reflects the probability of the occurrence of 

particular neuronal dynamics which altogether constitute a dynamic repertoire of brain 

activity in particular functional state (Fingelkurts et al., 2003b). Indeed, diversity creates a 

rich repertoire of brain activity, which can meet the complex computational and 

communicational demands of the brain. By preventing neural dynamics from getting “stuck” 

in so-called attractor states, neural diversity may facilitate quick responses to environmental 

demands in a wide variety of ways, and with less effort than a system where all states are 

identical. 

The next section describes a dynamic repertoire of SP types during two functional states of 

the brain: closed eyes and open eyes conditions. 

 

4.2. Diversity of EEG short-term SPs during changes in functional state of the brain (closed 

vs open eyes conditions) 

Converging evidences suggest that characteristic EEG rhythms (indexed here by particular 

SP types) constitutes a mechanism by which the brain can regulate changes of state in 

selected neuronal networks to cause qualitative transitions between modes of information 

processing (Lopes Da Silva, 1996). Different frequency bands reflect functionally different 

components of information processing acting on various spatial scales (Bhattacharya, 2001) 

and prominent during different functional states (Michel et al., 1992). Indeed, in the present 

and previous studies (Fingelkurts et al., 2003a,b) it was demonstrated that SP types have 

different significance (their occurrence is more or less probable) depending on functional 

state of the brain. 

Thus, in the present study, closed eyes condition was characterised by a higher percent of SP 

types which described 8.5–11.5 Hz frequency range (alpha band) and lower percent of SP 

types which described 1.5–4 Hz frequency range (delta-theta band) when compared with 

open eyes (Fig. 3 and 4). During closed eyes condition SP types which described alpha band 

dominated in the majority of categories of SPs over SP types which described delta-theta 

band. This is an expected finding (Table 1): resting EEG power spectra recorded with eyes 

closed are usually dominated by a peak in the alpha frequency range 8–12 Hz (Niedermeyer 

and Lopes da Silva, 1999; Nunez et al., 2001). Such increase in the power of alpha band may 

be due to an increase in synchronization or coupling strength (i.e., the degree of cooperation) 
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between various neuronal elements within cortical networks generating the EEG signals. von 

Stein and Sarnthein (2000) proposed that maximal alpha activity such as with eyes closed rest 

does not reflect an inactive brain state, but rather reflects a state with internal mental activity 

(top-down processing). It is maximal in situations where cortical processes are not 

determined by external stimuli but are driven by free floating associations, mental imagery, 

planning, etc. This supposition is in line with the work of Mantini et al. (2007) where the 

authors showed that an increase in alpha power at rest correlates positively with activity in 

the default and self-referential networks, and negatively with activity in the dorsal attention 

networks. See also the work of Cooper et al. (2003) who demonstrated that when attention is 

directed internally towards mental imagery, alpha power is greater than during externally 

directed, information-intake tasks.  

Since in the present study subjective experiences during two resting conditions have not been 

collected, correspondence between observed SP types and subjective experiences could not 

be estimated. This should be planed for future research. 

Eyes opening was characterised by a considerable increase in the number of SP types which 

described delta-theta band and considerable reduction in the number of SP types which 

described alpha band (Figs. 3 and 4; Table 1). Such reciprocal relationship between alpha and 

delta-theta oscillatory systems was summarised earlier (Klimesch, 1999a; Knyazev, 2007): 

alpha typically decreases whereas delta-theta increases. 

Consistent with previous studies, a reduction in alpha activity is expected from eyes closed to 

eyes open. This reduction of alpha in the eyes open resting condition indicates an increase in 

nonspecific activation caused by basic sensory input. This could reflect the uncoupling of 

vast thalamo-cortical interactions to aid the processing of visual information (Gevins et al., 

1997; Klimesch, 1999a; Klimesch et al., 2001). Alternatively, alpha “blockade” can be 

interpreted as an orienting reaction of the brain rather than a sensory processing (Jung, 1953). 

Indeed, alpha desynchronisation reflects general task demands and attentional processes 

(Sokolov, 1963; Klimesch, 1999a; Pfurtscheller and Lopes da Silva, 1999; Verstraeten and 

Cluydts, 2002; Babiloni et al., 2004; Sauseng et al., 2005b; Mantini et al., 2007). 

Considering that opening one’s eyes results in nonspecific activation compared to the eyes 

closed condition, an increase in delta-theta activity is not surprising. Thus, activity in the 

theta band may be responsible for the encoding of incoming information and reflects 
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demands in attentional processes (Basar et al., 2001; see also Doppelmayr et al., 1998; 

Klimesch, 1999a). 

Detailed description of SP types which are involved in closed and open eyes conditions can 

be found in Fingelkurts et al. (2003a). 

The present findings substantially extended previously known data: (a) for the first time 

quantitative description of EEG signal is given in terms of the diversity of short-term SP 

types; this diversity describes quantitatively the portion of EEG which is characterised by a 

particular type of activity and (b) reorganisation of this diversity (the occurrence of particular 

SP types) rather than changes in EEG amplitude or power during transition from closed eyes 

to open eyes conditions was demonstrated. 

Taken together, the presented findings suggest that the probability of the occurrence of 

particular SP types were typical for each of the examined conditions, reflecting a particular 

composition and percent ratio of EEG oscillations (in SPs description) which are needed to 

achieve the main goal of a given functional state or to maintain it. Perhaps composition and 

percent ratio of EEG oscillations (in SPs description) reflect the poly-operational structure of 

brain activity (for discussion see Fingelkurts et al., 2003b). Thus, changes in the brain 

functional state were accompanied by changes in the poly-operational structure of brain 

activity. 

Before coming to the final conclusions, methodological questions regarding the influence of 

volume conduction and reference electrode on SP shape should be raised. Effect of volume 

conduction on the results in the present study was insignificant due to the following reasons: 

(a) It was shown, that there is little effect of volume conduction on the shape of the spectrum 

below about 25 Hz and spatial filtering is significant only for frequencies above 25 Hz 

(Robinson et al., 2001). All results in the present study were observed below 25 Hz; (b) The 

skin and skull are not considered to be serious frequency filters (Nunez, 1995); (c) The 

accuracy of topographic EEG mapping for determining local (immediately under the 

recording electrode) brain activity was already established by Cook et al. (1998) (see also 

Bullock, 1997; Kaiser, 2000; Freeman, 2003); (d) It has been shown that EEG and MEG 

(which is free from volume-conduction effects) offer comparable spatial resolutions on the 

order of several millimetres (Cohen et al., 1990; Ingber, 1991). Dipole localization accuracy 

of 7-8 mm for EEG and 3 mm for MEG has been demonstrated using a human skull phantom 
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(Leahy et al., 1998). Thus, spatial resolution of EEG might be better than widely believed. 

Additionally, the presented results cannot be attributed to the EEG recording with linked ear 

reference electrode for the following reasons: (a) in our early studies with the same reference 

electrode it was shown that the occipital and frontal regions clearly showed SPs with 

dominant peaks at different frequencies; (b) the analysis revealed, that each EEG channel or 

small group of channels has its own SP set; (c) the analysis in the present study revealed the 

existence of high diversity of SPs which consistently changed along with the change in 

condition (closed vs open eyes); (d) it was shown that frequency and amplitude in the delta, 

theta, alpha and beta bands did not vary significantly as a function of reference (Ferree et al., 

2001).  

 
4.3. Utilisation of the results 
 
Understanding of the diversity of short-term EEG SP types has theoretical and practical 

importance: 

(1) The inherent dynamic structure of EEG activity is information-rich about the 

underlying cellular and intercellular processing, brain states, localization, forms of 

cooperativity, stages of development and of evolution (Bullock, 1997). Therefore, the 

information about the diversity of short-term EEG SP types may improve our 

understanding of underlying neurodynamics of brain states (Fingelkurts et al., 2003a,b, 

2006a). Considering that the resting EEG is the most widely used experimental 

condition as a “baseline” of brain activity (a default mode, Raichle et al., 2001; 

Raichle and Snyder, 2007), information on the diversity of short-term EEG SP types 

adds additional description to the baseline brain activity and may help reveal some 

characteristics of a default mode of brain functioning. An important consequence of 

SP diversity is that several aspects of the brain’s activity that have traditionally been 

interpreted as irreducible randomness can now be explained in physiologically 

meaningful ways. Described diversity of short-term EEG SP types of spontaneous 

activity could provide a priori hypotheses about the way in which the brain would 

respond across a wide variety of task conditions. It can be hypothesised that EEG 

during increased functional loading (cognitive tasks) would be characterised by the 

same number of SP categories as in the rest conditions and by the different number of 

SPs within categories when compared with the rest. Additionally one may assume that 
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during neuropathology and/or psychopathology both the number of SP categories and 

the number of SPs within categories would be different from those of the resting 

conditions.  

(2) Frequency is an important feature of EEG activity – which would perhaps be expected 

from the fact that neuronal activation amplitudes are coded as firing frequency.  

However, there is lack of studies dedicated to EEG frequencies. At the same time, the 

conventional EEG has shown that the variation of EEG amplitude and frequency can 

be quite poorly correlated (Lazarev, 2006). In this context, the presented results 

quantitatively supplement the knowledge on EEG frequency component. A 

methodological advantage of the presented approach is that desynchronized fragments 

of an EEG epoch could be represented equally well with synchronized ones due to 

estimation of dominant frequency independently of the wave amplitude. Additionally, 

this approach allows researchers to investigate whether adjacent frequency bins show 

sharp discontinuities around the lower and upper frequencies of the broad bands.  

(3) It was suggested that integrative brain functions are shaped by (a) the superposition of 

oscillations including the delta, theta, alpha and beta bands and (b) activation of two 

or more selectively distributed oscillations in these bands (Basar, 2004). The approach 

presented here enables researches to measure exact percent of EEG where the 

superposition of oscillations is present. Additionally, presented results are of eminent 

significance in giving the interpretation of EEG signal. Described results suggested 

that (a) resting state networks should show EEG oscillations in multiple frequency 

bands, and that frequencies from different bands may be coupled or act together to 

mediate brain operations; (b) slow and fast rhythms may be not independent, and may 

underlie patterns of cooperation on a variety of temporal scales (Bruns et al., 2000; 

Fingelkurts and Fingelkurts, 2008). Hence, analysis of EEG data requires methods 

that consider the whole frequency spectrum rather than single frequency bands; (c) 

there is a limit in the number of accessible oscillatory states available to the cortex 

and many different ways that the microstate (indexed by SP type) can rearrange itself 

and still produce the same macrostate (tested condition). 

(4) EEG oscillations provide a rich source of potentially useful endophenotypes for 

psychiatric genetics (Begleiter and Porjesz , 2006) as they are highly correlated with 

human information processing and cognition (Basar et al., 1999, 2000; 2004; 



25 

 

Klimesch, 1996, 1999a,b, 2003; Klimesch et al., 2005 and others) on one hand and 

with brain dysfunction involved in the predisposition to some psychiatric disorders 

(Gevins et al., 1995; Chabot et al., 1996, 2001; Thatcher et al., 2001; Allen et al., 

2004; Coan and Allen, 2004; Weisbrod et al., 2004; Lehmann et al., 2005; Prichep et 

al., 2006; Jalili et al., 2007; Rossini et al., 2006, 2008 and others) on the other. 

Additionally, EEG oscillations possess excellent heritability (Stassen et al., 1988; van 

Beijsterveldt and Boomsma, 1994; van Beijsterveldt et al. 1996; for the review and 

meta-analysis, see van Beijsterveldt and van Baal, 2002). In this context, the 

knowledge on the diversity of short-term EEG SP types may provide clues about 

cerebral function, and may shed light on pathogenic mechanisms involved in 

neurological and psychiatric disorders, where impairment in brain electrical activity is 

apparent (Fingelkurts et al., 2000, 2006b,c,d, 2007). Indeed, diversity is often used as 

a measure of the health of biological systems. 

 
5. Conclusion 
 
To summarize, the study demonstrated that during resting conditions and independently of 

functional state of the brain (closed eyes vs open eyes conditions) (a) the diversity of short-

term EEG SP types was limited, (b) the percent distribution of SP types among different 

categories of SPs based on morphology of SPs was constant, (c) the most preferred 

frequencies were restricted to delta-theta and alpha bands and (d) independent beta rhythm 

was a less probable oscillation. 

At the same time, closed eyes and open eyes conditions differed from each other by the 

percent distribution of different types of SPs. The probability of the occurrence of particular 

SP types were typical for each of the examined conditions with domination of alpha-

rhythmical SPs during closed eyes condition (39% vs 13%) and domination of delta-theta-

rhythmical SPs during open eyes condition (53% vs 27%). 

Some of these results could be considered trivial, however, the present study substantially 

extended previously known data: (a) for the first time the diversity of short-term SP types 

was described both qualitatively and quantitatively and (b) reorganisation of this diversity 

rather than changes in EEG amplitude or power during transition from closed eyes to open 

eyes conditions was demonstrated. 
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As has been discussed above, joint analysis of the diversity of SPs obtained in this paper and 

published earlier data on how SP morphology depends on neurophysiological parameters and 

nonlinear measures reveals the following characteristics of resting EEG: up to 57% of short-

term EEG signal during resting conditions is produced by activity of single neuronal 

ensemble and up to 44% of it reflects highly organized activity (ordered behaviour with low 

entropy) of the underlying neuronal ensemble. Up to 36% of short-term EEG during rest 

reflects the activity of two or more neuronal ensembles with resonant ordered behaviour 

within each individual ensemble. And finally, only up to 9% of short-term EEG reflects 

transitory or noisy/disorganised episodes in resting EEG. Notice that different types of SPs 

within the same and/or different SP categories are combined temporally in a “mosaic” way. 

Understanding of the diversity of short-term EEG SP types is not only of a theoretical and 

practical importance, but also of eminent significance in giving a solid basis to the 

interpretation of EEG. 

Further studies will be necessary to identify (a) what is the origin of SP diversity? (b) does SP 

diversity vary as a function of age and gender? (c) is SP diversity determined by genetic 

factors or environmental influences? and (d) does resting-state SP diversity predict cognitive 

performance, emotional reactivity or certain disorders? Data on the extent of intraindividual 

versus interindividual variability of SP types and stability of individual differences with 

respect to SP types have been published earlier (Fingelkurts et al., 2006a). 
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