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Abstract 
This paper describes for the first time the phenomenon of spatio-temporal mapping of 
interchannel temporal coincidences of rapid transition processes (RTPs) in multiple EEG 
frequencies. It is suggested that RTPs in multiple EEG frequencies found in different EEG 
channels could reflect the process of switching between brain operations performed by 
different neuronal assemblies. Systematic non-random temporal coincidences among RTPs 
found in those EEG channels could reflect functional (operational) synchrony. However, until 
now there have been no studies examining the existence of systematic RTPs synchronization 
among different EEG channels in a frequency domain. Therefore functional synchrony based 
on precise (point to point) temporal coincidence of RTPs found in different EEG channels 
and comparison with surrogate data were estimated. Findings of the present study 
demonstrated for the first time that non-random temporal coincidence of RTPs in EEG 
multiple frequencies exist for both closed and open eyes conditions. Each of the states had its 
own distinguished peculiarities. Similarity of the main peculiarities of operational synchrony 
found in EEG frequency domain (the present study) with EEG amplitude and phase domains 
(previous studies) permitted us to conclude that operational synchrony is a universal 
phenomenon in brain activity. Therefore, patterns of interaction between the cortical areas, 
which are usually calculated with classical cross-correlation and coherence analysis, may be 
complemented with operational synchrony.  
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1. Introduction 

 
At present it is well established that an electroencephalogram (EEG) is a highly non-

stationary signal (Bodenstein and Praetorius, 1977; Barlow, 1985; Jansen and Cheng, 1988; 

Shishkin et al., 1997; Kaplan, 1998; Kaplan et al., 2005) and may be considered to be the 

result of “gluing” of short-term stationary casual processes with different probability 

characteristics (a piecewise stationary) (Brodsky et al., 1999; Fell et al., 2000). Considering 

that an EEG signal is characterized by three major components (amplitude, frequency and 

phase), one may assume that each of them can exhibit non-stationary behavior. Indeed, it has 

been demonstrated that all three EEG characteristics change abruptly with the progression of 

time (for EEG amplitude see: Fingelkurts et al., 2004; Kaplan et al., 2005; Fingelkurts and 

Fingelkurts, 2008, 2010a; for EEG frequency see: Fingelkurts et al., 2003a,b; for EEG phase 

see: Freeman, 1990, 2004; Wallenstein et al., 1995; Kozma and Freeman, 2002; Puljic and 

Kozma, 2003). In other words, the values of EEG amplitude, frequency and phase persist for 

some time around some stable average, then abruptly “jump” up or down to a new stable 

average which after some time is replaced by another average level. These “jumps” in EEG 

characteristics or rapid transitional periods (RTPs) as we named them (Fingelkurts and 

Fingelkurts, 2001, 2008) mark the boundaries of segments of relatively stable brain 

functioning. It has been proposed that during these stationary periods a particular brain 

system (transient neuronal assembly) executes separate operations (for a review see 

Fingelkurts and Fingelkurts, 2005). Neuronal assembly is defined as a set of neurons that 

cooperate (synchronize their activity) to perform a specific computation (operation) required 

for a specific task (Palm, 1990; Eichenbaum, 1993; von der Malsburg, 1999; Buzsáki, 2006).  

The abrupt transition from one EEG segment to another in this sense reflects the changes of 

transient neuronal assembly state or changes in the activity of the two or more of such 

assemblies (Lehmann, 1971; Jansen and Cheng, 1988; Kaplan et al., 2005). This suggests that 

ongoing brain activity occurs in discontinuous steps (Freeman, 1990, 2004; Freeman and 

Holmes, 2005; Kozma and Freeman, 2002; Kozma et al., 2005) and confirms the view that 

the cerebral cortex is continuously active even in wakefulness (Thatcher and John 1977; 

Herscovitch 1994; Arieli et al., 1996; Tsodyks et al., 1999; Raichle et al., 2001; Raichle and 

Snyder, 2007). 
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Studies on EEG amplitude domain (for the reviews see Fingelkurts and Fingelkurts 2001, 

2005, 2008, 2010a) and EEG phase domain (Freeman and Rogers, 2002; Freeman and 

Holmes, 2005; Kozma et al., 2005) demonstrated that (a) RTPs observed in different EEG 

channels systematically coincide in time and (b) this RTP temporal synchronicity is not 

occasional, it occurs significantly higher or lower than is expected by chance alone. The RTP 

synchrony estimates periods of the mutual temporal stabilization of quasi-stationary segments 

in the multichannel EEG (Fingelkurts et al., 2005). At the neurophysiological level this 

implies that various neuronal assemblies located in different cortical regions synchronise 

their operations on a particular time-scale (Freeman and Holmes, 2005; Fingelkurts and 

Fingelkurts, 2005). Such synchronization reflects brain functional connectivity (as it is 

defined by Friston et al., 1993, 1996) and was named Operational Synchrony (Fingelkurts 

and Fingelkurts, 2001).  

Although it is often claimed that volume conduction is the main obstacle in interpreting EEG 

data in terms of brain connectivity, it has been shown previously through experimental 

studies that in contrast to many other measures of functional synchrony, brain connectivity 

measure based on temporal coincidences of RTPs is sensitive to the morpho-functional 

organization of the cortex rather than to the volume conduction and/or reference electrode 

(for relevant details, we refer the reader to Kaplan et al., 2005; Fingelkurts and Fingelkurts, 

2008). These findings also suggested the existence of statistical heterogeneity (anisotropy) of 

electromagnetic field in regard to the processes of mutual stabilization of quasi-stable periods 

in regional EEGs. In addition and contrary to other EEG measures of functional connectivity, 

the measure based on temporal coincidences of RTPs does not require implicit or explicit 

source model for the interpretation of its results (Fingelkurts and Fingelkurts, 2001). 

Additionally, there have been actual cases (for the review see Fingelkurts and Fingelkurts, 

2010b) where electrode-functional source correspondence was seen in studies focusing on the 

cortical activities immediately under the skull thus suggesting that local EEG is sensitive to 

morpho-functional organization of the cortex: (1) Covariance between neighboring electrodes 

across cortex functional boundaries (e.g., parietal to temporal areas) is much smaller than 

covariance within functional regions (e.g., left parietal to midline parietal area), indicating 

that multiple distinct functional areas are assessed by topographic EEG (Kooi, 1971; Bullock 

and McClune, 1989). (2) Experimental findings demonstrated that the probabilities of firing 

of neurons observed singly and in small groups simultaneously are in close statistical 
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relationship to the EEG recorded in the near vicinity (Freeman, 1975; Eeckman and Freeman, 

1990, 1991). Therefore the EEG can provide an experimental basis for estimating the local 

mean field of contributory neurons. (3) Important work came from Cook et al. (1998) who 

demonstrated experimentally the accuracy of topographic EEG mapping for determining 

local (immediately under the recording electrode) brain activity. Study demonstrated that 

there are statistically significant linear relationships between EEG power and perfusion in the 

majority of frequency bands (Cook et al., 1998). This finding is in line with earlier study of 

Inouye et al. (1986), where the authors demonstrated that endogenous EEG activity 

originated from underlying cortex area contributes the most to the spectral power measured 

from the given EEG electrode. Whereas exogenous EEG activities originated from the other 

cortical areas contribute to spectral power of the same EEG electrode insignificantly. Thus, 

together described works suggest that topographic EEG mapping can accurately reflect local 

brain function and that it is comparable to other topographic methods. 

Notice that in these studies there are no inferences about primary generators (sources) of the 

EEG activity in different cortex areas. Considering that all activities (influences) from 

multiple primary sources are not just mixed, summed or averaged in a given cortex area, but 

are integrated within the current state (activity) of this area, the local EEG is considered to 

represent a functional source, which is defined as the part or parts of the brain that contribute 

to the activity recorded at a single sensor (Stam, 2005; Wackermann and Allefeld, 2007). A 

functional source is an operational concept that does not have to coincide with a well defined 

anatomical part of the brain, and is neutral with respect to the problems of localization of 

primary source and volume conduction (Stam, 2005; Wackermann and Allefeld, 2007). 

Until now there have been no studies examining the existence of systematic RTPs 

synchronization among different EEG channels in a frequency domain. At the same time, 

exactly different frequencies of EEG oscillations reflect functionally different components of 

information processing acting on various temporal scales (Klimesch et al., 2005). It is 

suggested that the oscillatory activity of neuronal pools, which is reflected in characteristic 

EEG rhythms, constitutes a mechanism by which the brain can regulate changes of a state in 

selected neuronal networks to cause qualitative transitions between modes of information 

processing (Lopes da Silva, 1996). Hence, different oscillatory patterns may be indicative of 

different information processing states, and it has been proposed that the oscillatory patterns 

play an active role in these states (Bhattacharya, 2001; Lakatos et al., 2005). 
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Various EEG oscillatory patterns can be indexed by different types of short-term EEG 

spectral patterns (SPs) – a distribution of spectral power values (Fingelkurts et al., 2003a), 

where each SP type may be considered as a single event in EEG phenomenology (Fingelkurts 

and Fingelkurts, 2010b). It was demonstrated that even at rest the EEG SP types emerge, 

persist for some time and then disappear to be replaced by other SP types (Fingelkurts et al., 

2003a,b). Additionally, the dynamics of spatio-temporal variability of resting EEG short-term 

SPs was characterized by abrupt alteration of relatively stable periods, the duration of which 

were significantly different from the respective characteristics of a random process 

(Fingelkurts et al., 2006). The obtained results suggest an existence of a special operational 

synchrony within basic EEG rhythms. In contrast to classical synchronization methods 

(coherence, correlation, phase and others), this kind of synchrony reflects a temporal 

consistency of quasi-stationary modes of brain oscillatory activity. 

Currently, a number of EEG measures of integrative brain activity indexed by functional 

connectivity are available. They are: (1) correlation and coherence coefficients (for the 

reviews, see Thatcher et al., 1986; Nunez et al., 1997) as well as partial directed coherence 

(Baccala and Sameshima, 2001); (2) dynamic imaging of coherent sources (Gross et al., 

2001), and phase synchrony based on wavelet (Lachaux et al., 1999) or Hilbert (Tass, 1999) 

transforms; (3) indices of mutual information (Xu et al., 1997); (4) “geometric” estimations 

of joint coordination of local EEGs calculated with the help of factor analysis (Manmaru and 

Matsuura, 1989; Lazarev, 1997) and multivariate linear regression (Wada et al., 1996; 

Lehmann et al., 1995) of the primary EEG characteristics; (5) chaotic dynamics of an EEG 

vector composed of simultaneous momentary counts of local EEGs (Matousek et al., 1995); 

(5) spectro-correlative characteristics of local EEGs (Ivanitski et al., 1990; Sviderskaya and 

Korol’kova, 1997); and (6) spatially oriented segmentation of cortical potentials proposed by 

Lehmann (Lehmann, 1971, 1987).    

Even though, many of these approaches have proved to be useful for characterization of 

integrative brain activity, all of them have one or more drawbacks and limitations from the 

following list (for the critical and detailed discussion, see Fingelkurts et al., 2005; Fingelkurts 

and Fingelkurts, 2005): Such methods (1) are designed predominantly for EEG analysis only 

in pairs of derivations, (2) do not take into consideration the non-stationary nature of the 

signal, (3) indicate only the linear statistical link between time-series curves in a frequency 

band, (4) require long time epochs of analysis, (5) can be applied only to homogeneous 
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medium, which is an unrealistic assumption for the brain, (6) borrow complex methodologies 

and conceptual frameworks from physics, mathematics, and engineering, but use them 

loosely when applying to the analysis of physiological signal, (7) as very averaged indices 

they lose a substantial part of their diagnostic value for studying discrete functional states of 

the brain, (8) local EEGs participate in the formation of the resulting dipole vector far from 

equally, what is unjustified from the viewpoint of indubitable neurobiological equivalence of 

cortical areas, (9) the measures used to characterize the EEG are often difficult to interpret in 

terms of their physiological correlate, (10) all existed measures of brain functional 

connectivity do not directly estimate metastability in the brain (Fingelkurts and Fingelkurts, 

2004). 

Additionally, lack of initial “attachment” of the majority of the abovementioned measures to 

brain oscillations makes results ontologically unpromising. At the same time, different 

frequencies of brain oscillations reflect functionally different components of information 

processing acting on various spatial scales (Klimesch et al., 2005). It is supposed that brain 

functioning is based on short- and long-range interactions between neuronal assembles which 

oscillate at multiple frequencies (Jing and Takigawa, 2000; Bhattacharya, 2001) which are 

coherent and specific and thus capable of resonance – functional communication (Basar et al., 

2001). 

Therefore, it was proposed to combine the advantages of the temporal and frequency 

approaches for the analysis of segment-to-segment organization of the cortical biopotential 

field. In such a way, this approach results in the topographic map of the EEG SP transitions 

and thus, enables researches to study spatio-temporal variability of brain oscillatory states 

(indexed by short-term spectral descriptions) in multichannel EEG. This analysis of 

topographic SP variability may permit researches to trace episodes of the metastable cortical 

inter-area cooperations independently on partial correlation and/or coherency between the 

local EEGs. Additionally, this method requires no a priori assumptions about which 

frequency bands should be synchronised, but rather relies on the natural statistical properties 

of the data. 

In context of the aforementioned it is reasonable to study episodes of synchrony within the 

dynamics of the spatial mosaic of different EEG oscillations. Hence, the aim of this study 

was to investigate systematic temporal coincidences of RTPs in EEG oscillatory patterns 



7 

 

(indexed by EEG SP types) in a broad frequency range (0.5–30 Hz) among different EEG 

channels. 

 

2. Materials and methods 

2.1. Subjects 

Twelve healthy, right-handed adult male volunteers (aged 19–26) participated in the study. 

None of the subjects reported any history of brain traumas or concussions, neurological or 

psychiatric disorders, acute or chronic medical illness, or was on medication at the time of the 

EEG registration. In addition, all of them have normal blood pressure and pulse rate. 

All of the subjects were informed beforehand about the nature of the procedure. Written, 

informed consent from all subjects and institutional ethical committee approval were 

obtained prior to the experiment. The study has been performed in accordance with the 

ethical standards laid down in the 1964 Declaration of Helsinki. 

Since alcohol influences variation of normal EEG (Propping et al., 1980), subjects were 

asked to abstain from alcohol for 2 days before EEG registration. To control variation due to 

food intake, participants were asked to have breakfast with two slices of toast, jelly and 

orange juice, and were instructed to avoid caffeine for 12 h prior to the recordings. 

The EEG registrations began at 10:00 a.m. 

2.2. Procedure and data acquisition 

Eight Ag/AgCl electrodes were placed bilaterally on the subject's scalp using the 10/20 

system of electrode placement at O1, O2, P3, P4, C3, C4, F3 and F4. Vertical and horizontal 

electro-oculograms were recorded. All electrodes were referred to linked ears (linked-ears 

reference was obtained digitally from two separate, impedance-checked channels). Raw EEG 

signals were amplified and bandpass-filtered in the 0.5–30 Hz frequency range and digitized 

at a sampling rate of 128 Hz by a 12-bit analog-to-digital converter with a resolution of 

1µV/bit. This frequency range was chosen because approximately 98% of spectral power lies 

within these limits (Thatcher, 2001).  
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Even though frequencies above 30 Hz (gamma band) have been proposed to be functionally 

informative, there are a number of methodological issues which lead us to exclude 

frequencies above 30 Hz from the present analysis: (a) it was shown, that there is little effect 

of volume conduction on the shape of the spectrum below about 25 Hz and spatial filtering is 

significant only for frequencies above 25 Hz (Robinson et al., 2001); (b) high-frequency 

spindles have very low signal-to-noise ratio, what results in considerable contamination of 

gamma band by noise; (c) dynamics of high-frequency responses may be a trivial by-product 

of power changes in lower frequencies (Pulvermuller et al., 1995) and/or due to ringing of 

filters by EEG spikes recurring at theta rates (Freeman, 2003); (d) gamma oscillations are 

present during states such as deep anesthesia, where conscious cognitive processing is absent 

(Steriade and Amzica, 1996; Steriade et al., 1996); (e) it was demonstrated that some of the 

induced gamma activity that was attributed to feature binding generated in visual cortical 

areas were in fact artifacts of miniature saccades evoked by the stimuli (Yuval-Greenberg et 

al., 2008). In addition, a strong link between gamma band oscillations and (un)conscious 

facial muscle activity during cognitive tasks was confirmed by showing that such oscillations 

disappear despite normal cognitive performance when the muscles are paralyzed (Whitham et 

al., 2007, 2008; Ball et al., 2008); (f) comprising only 2% of spectral power (Thatcher, 2001), 

contribution of high-frequency band into spectrum cannot be significant; (g) Bullock et al 

(2003) demonstrated many “good” rhythms in the 2–25 Hz range which were mainly 

sinusoidal, but did not find them in 30–50 Hz band; (h) gamma band is often known to carry 

cognitively relevant information, however presented study was conducted during resting 

conditions. Considering all of these, there might be difficulties in the meaningful 

interpretation of effects in high-frequency band regardless of how powerful or statistically 

significant they may be. 

The impedance of the recording electrodes was always below 5 k. The presence of an 

adequate EEG signal was determined by visual inspection of the raw signal on the computer 

screen. 

After the electrodes were placed on the subject’s head and the instrument calibrated, the 

subject was seated in a comfortable chair in a registration room and the procedure was 

explained. To reduce muscular artefacts in the EEG signal, the subject was instructed to 

assume a comfortable position and to avoid movement. 
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Instructions designed to minimize movement and relax jaw muscles resulted in suppressing 

the myogram class of artifact to the extent that the high-frequency spectrum was not 

significantly affected. A subject was instructed also to look straight in front of him/her (even 

when the eyes were closed) and to avoid unnecessary eye movements. Constant visual EEG 

monitoring allowed the selection of only artifact-free 1-min EEG recordings for analysis. 

Alertness of subjects during the EEG recording was determined by the design of the study: 

separate 1-min EEGs were recorded in a relatively well-lit room with a short break in-

between to assume a comfortable position. Such design should keep subjects awake. 

Vigilance of subjects was controlled by visual detection for the presence of sleep spindles 

which appear naturally during drowsiness (Rechtschaffen and Kales, 1968). None of the 

subjects demonstrated sleep spindles in the recorded EEGs. 

For each subject ten 8-channel 1-min EEGs were recorded randomly during steady resting 

conditions for closed and open eyes separately. Such ongoing EEG activity during resting 

condition reflects the current functional state of neuronal masses rather than a random 

process (Livanov, 1984). A total of 102 (for closed eyes) and 45 (for open eyes) artifact-free 

1-min EEGs were selected for the analysis. 

According to literature two one-min EEGs have proven to produce reliable estimates of 

internal consistency (Coan et al., 2001). Moreover, even the duration of 20 sec of EEG epoch 

is sufficient to reduce adequately the variability inherent in the EEG (Gasser et al., 1985). In 

the present study majority of the subjects contributed to EEGs’ pool with 10 one-min EEGs 

(for closed eyes) and 4 one-min EEGs (for open eyes), which is well above the 

aforementioned limits. 

2.3. Data Processing 

EEG analysis was undertaken in four stages (Fig. 1). Since EEG is widely referred to as a 

non-stationary signal with varying characteristics (for the reviews see Barlow, 1985; Jansen 

and Cheng, 1988; Kaplan, 1998; Kaplan et al., 2005), EEG oscillations are expected to be 

dynamic in nature. During the first stage of EEG analysis the data series were divided into 

overlapping windows in order to capture EEG changing dynamics. EEG oscillations were 
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quantified by calculation of individual short-term EEG SPs. Individual power spectra1 were 

calculated in the range of 0.5–30 Hz with 0.5-Hz resolution (61 values), using FFT with a 2-

sec Hanning window shifted by 50 samples (0.39-sec) for each channel of 1-min EEG. 

According to previous studies, these values proved the most effective for revealing 

oscillatory patterns from the signal (Levy, 1987; Kaplan, 1998).  

The works which have studied the effect of epoch length on the variability of power spectrum 

(Levy, 1987; Kaplan, 1998) demonstrated that (a) the epoch-to-epoch variability with power 

spectra computed using 2-sec epochs was significantly less than the variability when power 

spectra were computed using longer epoch lengths, and (b) analysis using 2-sec epochs 

identified changes more rapidly than analysis using any longer epoch length, and the 

differences were clinically significant as well. Moreover, a 2-sec epoch is long enough to get 

a reliable estimation of the lowest frequency (0.5 Hz), and is short enough to be quasi-

stationary (McEwen and Anderson, 1975; Inouye et al., 1995). Taken together these findings 

suggest that 2-sec epoch lengths are preferable when power spectrum analysis is used. 

Further, according to the work of Kaplan (1998) in which the author studied the effect of 

window shift on disclosing oscillatory patterns from the signal using shifts from 1 to 256 

samples, the window shift in 50 samples was the most effective. Sliding spectral analysis 

with overlapping segments, previously applied to EEG signals (Keidel et al., 1987; Tirsch et 

al., 1988), (a) takes the non-stationarity of the time series into account, (b) compensates for 

the effects of windowing and (c) prevents loss of information due to residual activity. 

We did not used predefined and isolated from each other narrow frequency bands because by 

doing so we could not examine behaviour of the actual/natural composition of brain 

oscillations involved. Earlier it was demonstrated that brain functioning is represented by 

multiple oscillations (Basar et al, 2000). According to the superposition principle introduced 

by Basar et al. (1999), brain activity is accompanied by superimposed multiple brain 

oscillations in many frequency bands (for the review, see Basar et al., 2004).  

                                                            
1 Log transformation of the power spectra was not used in the present study for the following reason: Log transformation 
usually normalizes a power spectrum, but, at the same time, it artificially reduces the contrast of the differences between 
large and small power values. This leads to the increased contribution of the small-amplitude values and correspondently, the 
noise into a total spectrum. For the purpose of this paper “clean” power spectra without noise contamination are of great 
importance. Additionally, log transformation can exaggerate extremely small, but topographically reproducible errors in 
areas with low EEG power. 
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After calculation of EEG short-term SPs, the total number of individual SPs for each channel 

of one-min EEG was 149 (Fig. 1). Each SP was labelled according to the index of the class to 

which it belongs with the help of a probability-classification analysis of the short-term EEG 

SPs (see Appendix to this article). Sequential single EEG SPs were adaptively classified in 

each channel of 1-min EEG using a set of standard SPs, which were generated automatically 

from the EEG data itself – and was not chosen arbitrary. The number of SPs classes in this 

study was 18–26 (for different EEG channels) (see Appendix to this article). As the result of 

classification procedure, each current SP was labelled according to the index of the class to 

which it belongs. Hence, each EEG signal was reduced to a sequence of individually 

classified SPs (Fig. 1).  

During the second stage, segmentation of EEG signal based on the changes of SP type was 

performed (Fig. 1). A single EEG spectrum illustrates the particular integral dynamics of tens 

and hundreds of thousands of neurons in a given cortical area at a particular point in time 

(Dumermuth and Molinari, 1987). Therefore, the absence of variance of a single SP type 

during several analyzed epochs proves that in a given cortical area the same macro-regimen 

of neuronal pool activity is maintained throughout that period. Thus, periods of several 

consecutive EEG epochs which are characterized by the same SP type comprise a SP-

segment – EEG segment of quasi-stationary oscillatory activity. The moment of change of the 

type of SP-segment marks a RTP. In such a way, time coordinates of each RTP for each EEG 

channel separately were determined (Fig. 1). The theoretical concepts behind segmentation 

analysis of EEG are described elsewhere (for the reviews see Fingelkurts and Fingelkurts, 

2001, 2008; Kaplan et al., 2005). 

During the third stage, functional brain connectivity based on temporal coincidence2 of RTPs 

found in different EEG channels was estimated (Fig. 1). The number of RTP’s temporal 

coincidences was counted for each 1-min EEG and compared with that of surrogate data. 

Two (or more) EEG channels were considered functionally connected if systematic temporal 

relationship among them (the number of coincided RTPs per 1-min EEG) was different from 

random level measured in surrogate data (see below). The values which are statistically  

                                                            
2 Technically, two (or more) RTPs from different EEG channels were considered coincident temporally when these RTPs 
had the same temporal coordinates. However, position of temporal coordinate of a given RTP is dependent on a discrete 
temporal lag of 0.39s used for calculation of SPs (see above). Therefore, the actual temporal coincidence is occurred in 0.39s 
window. Considering that the shift in 0.39s was the most effective on disclosing oscillatory patterns from the signal in 
modelling study (Kaplan, 1998), one may assume that measured temporal coordinates of RTPs are approach the real ones. 
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Figure 1. The scheme of the data processing. First stage: Sliding spectral analysis and 
adaptive classification of short-term spectral patterns (SP) were done separately for each 
subject and each channel of 1-min EEG. O1 = Left occipital EEG channel. Gray small 
numbers under each SP represent the running numbers from 1 to 149 of EEG epoch analysis. 
The number in the square represents the class to which a given SP was assigned during 
classification procedure. Second stage: Segmentation of EEG signal based on the changes of 
SP type was performed. The moment of change of type of SP-segment marked a rapid 
transitory period (RTP). In such a way, time coordinates of each RTP for each EEG channel 
separately were determined. Third stage: Functional connectivity based on precise (point to 
point) temporal coincidence of RTPs found in different EEG channels was estimated. Fourth 
stage: EEG structural synchrony mapping was performed based on mapping onto schematic 
brain maps synchronised EEG channels (synchrocomplexes) by connecting lines between the 
EEG channels involved. 
 

significantly above the random level indicate ‘active’ coupling of EEG segments 

(synchronization of EEG segments is observed significantly more often than it expected by 

chance), whereas the values which are statistically significantly below the random level 

indicate ‘active’ decoupling of EEG segments (synchronization of EEG segments is observed 

significantly less than it expected by chance).  

Notice that synchronised RTPs mark transitions between different types of SPs, which are 

usually different in various EEG channels (Fig. 1, third stage, insertion). Therefore, described 

RTPs-based measure of functional connectivity, in contrast to conventional approaches, is 

free from similarities of the EEG signals in different channels. In this context, stabilization of 

SP RTPs simultaneously in several cortical areas may reflect formation of steady cooperation 

between cortical areas independently on particular characteristics of these SPs within each 

EEG channel.  

Result of such cooperation represents a metastable state (Kelso, 1995; Bressler and Kelso, 

2001; Kozma et al., 2005; for the resent reviews on metastability in the brain, see in 

Fingelkurts and Fingelkurts, 2004, 2005, 2008 and Werner, 2007). It was suggested that this 

measure reveals functional (operational) interrelationships between cortical sites different 

from those measured by correlation, coherence and phase analysis (Kaplan et al., 2005; 

Fingelkurts et al., 2005). From a qualitative perspective, the coupling of EEG segments 

corresponds to the phenomenon of synchronization of brain operations or operational 

synchrony – OS (Kaplan et al., 1997; Fingelkurts and Fingelkurts, 2001, 2004, 2005, 2008).  



14 

 

Each case of temporally synchronised RTPs between two or more EEG channels is described 

as a synchrocomplex (SC). The number of cortical areas recruited in SC is described as “the 

order of areas recruitment.” All SCs were divided into seven categories based on the number 

of cortex areas involved: SC2 – SC with 2nd order of area recruitment, SC3 – SC with 3rd order 

of area recruitment, SC4 – SC with 4th order of area recruitment, SC5 – SC with 5th order of 

area recruitment, SC6 – SC with 6th order of area recruitment, SC7 – SC with 7th order of area 

recruitment and SC8 – SC with 8th order of area recruitment. Notice that any given SC was 

considered as a member of its own category (for example, SC3) only if correspondent RTPs 

coincided in time among correspondent number of EEG channels (in this example, 3). 

However, any three SC2s which could comprise the SC3 but which did not coincide in time 

between each other were not considered as producing SC3 type and, therefore was not 

counted. The same logic was applied for any SCs and for any category. 

At stage four, EEG structural synchrony mapping was performed (Fig. 1). The most frequent 

SCs which occurred (a) in the largest number of repetitions (in %) among all found SCs (n = 

14156 of all SCs for closed eyes and n = 6195 of all SCs for open eyes) and (b) in more than 

40% of all EEGs (n = 102 for closed eyes and n = 45 for open eyes) were mapped onto 

schematic brain maps as connecting lines between the EEG channels involved. 

2.4. Control for a non-random RTP synchrony 

Control for a non-random RTP synchrony was performed by comparing results of synchrony 

from real EEG with those of surrogate data: 

Surrogate data: Surrogate data were used to control for the neural origin of spatial-temporal 

dynamics of SPs, which is commonly applied as direct probing a signal for a non-random 

spatial-temporal structure (Ivanov et al., 1996). Surrogate signals have identical parameters 

with the original signals but do not have spatial-temporal correlations. Construction of 

surrogate data is illustrated in figure 2. 

In order to simulate a situation with full temporal mismatch, 8 channels of the initial 1-min 

EEGs were mixed such that no two channels were recorded at the same time in each of the 

newly constructed 8-channel 1-min EEGs. This way, the natural time relations between 

channels in surrogate EEG were completely destroyed; however, the natural dynamics of SP-
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segments sequence and the ratio between different types of SP-segments within each EEG 

channel remained the same (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Construction of surrogate data: only one channel from each real 8-channel EEG 
(one minute) was mixed into surrogate 8-channel EEG (one minute). Thus, mixing of the real 
EEG channels was done in such a way that each channel of surrogate EEG was recorded in a 
different time. 
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2.5. Statistics 

In order to reveal statistically significant differences between closed eyes and open eyes 

conditions, and surrogate data the Wilcoxon matched pairs t-test was used. Statistical 

significance was assumed when p < 0.05 (only statistically significant values are displayed). 

 

3. Results 

3.1. EEG functional (operational) connectivity 

EEG segmentation revealed that EEG channels were characterised by 30 to 114 RTPs 

(average values for each EEG channel for closed and open eyes separately are presented in 

Table 1). In general, open eyes condition had more RTPs per EEG channel than closed eyes 

condition (p < 0.008) with larger difference in the posterior part of the head. After RTPs in 

EEG multiple frequencies (indexed by the change of the type of SP-segments) were 

determined in each EEG channel, the absolute number of RTP’ temporal coincidences 

between different EEG channels (or SCs) was calculated. There was no statistically 

significant difference between the total number of SCs for closed and open eyes conditions 

(see insertion in Fig. 3).  
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Figure 3. The number of synchrocomplexies (SCs) within each category (in % from the 
total number of SCs in one-minute EEG). In the insertion the total number of SCs per one-
minute EEG is presented. Data averaged across 102 EEGs (for closed eyes - CE) and 45 
EEGs (for open eyes - OE). MCh = mixed channels (surrogate data); ns = statistically 
nonsignificant;  
* = p<0.05; ** = p<0.01; *** = p<0.001      
 

At the same time, these two conditions differed from each other by the number of SCs within 

each of the seven categories (see Section 2.3) (Fig. 3). Figure 3 illustrates percent distribution 

of SCs among all SC categories. The closed eyes condition was characterised by a larger 

percent of SCs with 2nd, 3rd, 4th and 5th order of areas recruitment (not statistically significant) 

and by smaller percent of SCs with 6th, 7th and 8th order of areas recruitment when compared 

with open eyes condition (p < 0.05 to p < 0.01). Moreover, for the closed eyes condition SCs 

with 5th order of areas recruitment was characterised by the largest percent of SCs, whereas 

for the open eyes condition number of SCs was the largest for SCs with 6th order of areas 

recruitment (Fig. 3).  
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To what extent do these estimations reflect the functional cortical inter-regional cooperation? 

It is obvious, that even in the absence of any functional interrelation between the EEG 

channels there should be a certain random level of RTPs synchronisation, which would 

reflect merely occasional combinations of RTPs from different channels. 

Figure 3 depicts the number of SCs from the surrogate data, in which the inter-channel 

correlation is completely absent whereas the regularities of SP-segments sequence within 

each channel remain unchanged. It is evident that, both the number of SCs in EEG (insertion 

in Fig. 3) and the distribution of SCs among different categories in surrogate data (Fig. 3) 

were statistically different (p < 0.05 to p < 0.001) from real EEG (closed and open eyes 

conditions). The number of SCs from the categories with 3rd and 4th order of area recruitment 

was significantly smaller for both conditions than for the surrogate data. At the same time, 

the number of SCs from the categories with 6th, 7th and 8th order of area recruitment was 

significantly larger for both conditions than for the surrogate data (Fig. 3). 

Taking into account that the process of functional cortical inter-regional cooperation in EEG 

frequency domain is a real phenomenon it is reasonable to look further into the details of the 

process. Were different EEG channels equally participating in the synchronization process? 

Figure 4A illustrates how often each EEG channel participates in SCs. It can be seen that 

generally each EEG channel participated in 53–64% of SCs for both closed and open eyes 

conditions. Additionally, for both closed and open eyes conditions EEG channels from 

posterior part of the head participated in synchronisation process to a lesser extent (with the 

minimum for O1 and O2) than EEG channels from anterior part of the head (Fig. 4A). At the 

same time, closed eyes condition was characterised by smaller percent of SCs in which a 

given EEG channel was participating when compared with open eyes condition (p < 0.01).  

The next issue addressed was the intensity of EEG channel’s participation in the 

synchronization process. Figure 4B presents the number of RTPs in a given EEG channel 

synchronised with RTPs in any other channel or channels. It can be seen that for both closed 

and open eyes conditions the majority (97.7–99%) of RTPs in each EEG channel were 

synchronised with RTPs from other channels. At the same time, closed eyes condition in 

general was characterised by smaller percent of synchronised RTPs than the open eyes 

condition (p < 0.04) in all EEG channels except C3 and C4 where the situation was reversed 

(Fig. 4B). Again, for both closed and open eyes conditions EEG channels from posterior part 
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of the head were characterised by smaller values of this index (with the minimum for O1 and 

O2) than EEG channels from anterior part of the head (Fig. 4B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. EEG channel’s participation in synchrocomplexies (SCs) (a) and intensity of 
EEG channel’s participation in synchronization process (b). Data averaged across 102 
EEGs (for closed eyes - CE) and 45 EEGs (for open eyes - OE). MCh = mixed channels 
(surrogate data). 
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Note, that the two indices for both closed and open eyes conditions differed from those of 

surrogate EEG (where the natural time relations between channels were completely 

destroyed, however, the natural dynamics of SP-segments sequence and the ratio between 

different types of SPs within each EEG channel remained the same) and were statistically 

significant (p < 0.01 to p < 0.001; Fig. 4). 

3.2. The most representative synchrocomplexes (SCs) 

In order to choose the most frequent (representative) SCs for each of the conditions we plot 

the frequency of the occurrence of each SC within each category (not shown). Values were 

organised from smallest to largest within each category. Those SCs for which frequencies of 

the occurrence “jump up” more than twice from the previous values were accepted as the 

most frequent for any given category. Table 2 represents the most frequent types of common 

SCs of each category and their attributes for closed and open eyes.  

It can be seen that for both closed and open eyes conditions the percent of a given SC type 

within each category varied between 5.9 and 22.9% (category with 8th order of areas 

recruitment is an exception because only one type of SC can exist for this category). Closed 

eyes condition for categories with higher order of areas recruitment (4, 5, 6 and 7) was 

characterised by higher percent of a given SC types within given categories (p < 0.007) when 

compared with open eyes condition (Table 2). For categories with lower order of area 

recruitment (2 and 3) the effect was reversed.  

All SCs presented in Table 2 occurred in more than 40% of all EEGs for each of the 

conditions. Notice that both conditions were characterised by the following dependency: the 

higher the order of area recruitment of the SC category, the larger the percent of EEGs which 

were characterised by a given SC (Table 2). At the same time, closed eyes condition differed 

from open eyes condition by smaller percent of EEGs for SCs from the categories with 2nd, 

6th and 7th order of area recruitment (p < 0.007). 

Each of the conditions besides common representative SCs was characterised also by unique 

representative SCs. They are presented in Table 3. 
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Table 2. Most frequent types of common for closed and open eyes synchrocomplexes (SCs)

of each category. Data averaged across all EEGs which had a given SC.

Combination's ID % within

SC EEG   channels category %

category O2 O1 P4 P3 C4 C3 F4 F3 (mean ± st.d.) of EEGs

2 0 0 0 0 1 1 0 0 CE 11.49 ± 8.5 44

OE 13.7 ± 14.2 44.4

2 1 1 0 0 0 0 0 0 CE 12.27 ± 7.5 49

OE 12.5 ± 8.4 64.4

2 0 0 0 0 0 0 1 1 CE 14.91 ± 8.9 52

OE 11.90 ± 6.3 53.3

3 0 0 0 0 0 1 1 1 CE 7.44 ± 0.05 56

OE 8.5 ± 5.3 55.6

4 0 0 1 1 1 1 0 0 CE 6.35 ± 3.87 51

OE 6.5 ± 3 48.9

4 1 1 1 1 0 0 0 0 CE 6.84 ± 5.0 53

OE 6.5 ± 4.2 53.3

4 0 0 0 0 1 1 1 1 CE 7.96 ± 0.06 71

OE 7.5 ± 4 62.2

5 0 1 0 0 1 1 1 1 CE 6.60 ± 4.76 54

OE 6.5 ± 3.6 64.4

5 0 0 1 0 1 1 1 1 CE 6.12 ± 0.03 66

OE 5.9 ± 3.5 60

6 1 1 1 1 1 1 0 0 CE 7.65 ± 0.04 68

OE 6.6 ± 3.2 84.4

6 0 1 0 1 1 1 1 1 CE 8.15 ± 0.04 64

OE 7.1 ± 4.3 73.3

6 0 0 1 1 1 1 1 1 CE 12.78 ± 6.6 77

OE 10.7 ± 6 93.3

7 1 0 1 1 1 1 1 1 CE 22.16 ± 0.14 87

OE 19.4 ± 9.6 95.6

7 0 1 1 1 1 1 1 1 CE 22.93 ± 0.1 90

OE 19.6 ± 12.2 93.3

8 1 1 1 1 1 1 1 1 CE 100 ± 0.0 100

OE 100 ± 0.0 100

SC = synchrocomplex; CE = closed eyes; OE = open eyes

"0" = represents EEG channels which are not functionally connected 

"1" = represents EEG channels which are  functionally connected 



22 

 

Table 3. Most frequent types of unique synchrocomplexes (SC) of each category.

Data averaged across all EEGs which had a given SC.

Closed eyes

Combination's ID % within

SC EEG   channels category %

category O2 O1 P4 P3 C4 C3 F4 F3 (mean ± st.d.) of EEGs

2 0 0 1 1 0 0 0 0 13.32 ± 11.7 39

3 0 0 0 0 1 1 1 0 8.01 ± 5.6 40

3 0 1 0 0 0 0 1 1 7.57 ± 3.57 47

3 1 1 1 0 0 0 0 0 8.42 ± 5.0 43

3 0 0 0 0 1 0 1 1 7.12 ± 3.34 51

4 0 1 0 0 0 1 1 1 5.93 ± 4.11 43

5 0 0 1 1 1 1 1 0 5.22 ± 2.74 56

5 1 0 0 0 1 1 1 1 6.20 ± 0.04 58

5 0 0 0 1 1 1 1 1 7.06 ± 0.05 67

Open eyes

2 1 0 1 0 0 0 0 0 10.86 ± 6.3 46.7

3 0 0 1 0 1 1 0 0 6.9 ± 2.9 48.9

4 1 1 0 0 0 0 1 1 6.5 ± 3 51.1

5 0 1 1 1 1 1 0 0 5.7 ± 2.8 62.2

5 1 1 1 1 0 1 0 0 5.5 ± 2.9 57.8

5 1 1 1 1 1 0 0 0 5.3 ± 2.4 71.1

7 1 1 1 1 1 1 0 1 16.7 ± 7 86.7

SC = synchrocomplex

"0" = represents EEG channels which are not functionally connected 

"1" = represents EEG channels which are  functionally connected   

 

3.3. Topography of EEG functional (operational) synchrony 

What are the topographic peculiarities of representative SCs presented in Tables 2 and 3?  

Figures 5 and 6 illustrate representative SCs mapped onto brain schemata as connecting lines 

between corresponding EEG sites.  

It can be seen that common SCs for closed and open eyes conditions (Fig. 5) were diverse 

and comprised all categories. At the same time, unique SCs specific for each condition (Fig. 
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6) had the following major differences: closed eyes condition was characterised by SCs with 

mostly fronto-central topography, whereas open eyes condition was characterised by SCs 

with mostly centro-parieto-occipital topography.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Common for closed and open eyes synchrocomplexes (SCs) (indexed by 
structural synchrony and presented at Table 1). Data averaged across all EEGs which had a 
given SC. The most frequent/representative SCs which occurred (a) the largest number of 
repetitions (in %) across all found SCs (n = 14156 of all SCs for closed eyes  and  n = 6195 
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of all SCs for open eyes) and (b) more than in 40% of EEGs are mapped onto schematic brain 
maps as connecting lines between the EEG channels involved. The frequency of occurrences 
of each displayed SC within each category is presented in the Table 1. Grey areas are used for 
the easier visual perception.  
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Figure 6. Unique for closed and open eyes synchrocomplexes (SCs) (indexed by structural 
synchrony and presented at Table 2). Data averaged across all EEGs which had a given SC. 
The frequency of occurrences of each displayed SC within each category is presented in the 
Table 2.  Explanation is the same as at Fig. 5. 
 

4. Discussion 

4.1. General aspects of functional (operational) connectivity 

Findings of the present study demonstrated for the first time that non-random temporal 

coincidence of RTPs in EEG multiple frequencies exist for both closed and open eyes 

conditions. This systematic between-areas synchrony of abrupt changes in EEG rhythms 

reflects the temporal consistency of the moments of switching between near-stationary 

functioning in the corresponding cortex areas. It was suggested that such switching between 

stationary functioning reflects a “switching” of brain operations performed by local neuronal 

assembles (Fingelkurts and Fingelkurts, 2001, 2005, 2008; Kaplan et al., 2005). Systematic 

temporal coincidences of moments of switching between stationary functioning in different 

EEG channels, hence reflect a temporal coordination of brain operations performed by 

remote neuronal assembles (Fingelkurts and Fingelkurts, 2001, 2005, 2008; Kaplan et al., 

2005; Fingelkurts et al., 2005).  

Both conditions were characterised by less operational synchrony between any 2 and 3 cortex 

areas and by more operational synchrony between any 6, 7 and 8 cortex areas than what is 

expected by chance. This means that during resting conditions small groups of cortex areas 

tend to work independently (by a sufficient degree of temporal dis-coordination of 

operations), whereas large groups of cortex areas “prefer” coordinated regime of functioning 

(in frequency domain). 

Of course, not every case of sharp transformation in EEG frequency is an indicator of 

“switching” of brain operations and, correspondingly, not all cases of coincidences of RTPs 

give evidence of synchronization of operations. However, considering the main tenets of 

operational architectonics (Fingelkurts and Fingelkurts, 2001, 2004, 2005, 2006, 2008), the 

fact that used connectivity measure is sensitive to the morpho-functional organization of the 

cortex rather than to the volume conduction and/or reference electrode (for relevant details, 

see Kaplan et al., 2005; Fingelkurts and Fingelkurts, 2008) and observed (a) systematicity of 

SCs, (b) consistent differences between closed and open eyes conditions and (c) differences 
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from surrogate data one may expect that the presented results mainly reflect brain operations 

performed by local neuronal assembles and their remote temporal coordination.  

Specifically, we found that the process of synchronisation of operations (indexed by temporal 

coincidences of RTPs in EEG multiple frequencies between different EEG channels) 

performed by different neuronal assemblies was highly expressed in both resting conditions 

(closed and open eyes). Indeed, each EEG channel participated in more than 50% of all SCs 

(Fig. 4A) and intensity of this participation was above 97% (indexed by the percent of RTPs 

in each EEG channel which were synchronised with RTPs from other channels) (Fig. 4B). 

Such a pronounced synchronisation process of the changes in EEG multiple frequencies 

during rest is consistent with the work of Fingelkurts and co-authors (Kaplan et al., 1997; 

Fingelkurts, 1998) where synchronisation process of the abrupt changes in EEG amplitude 

was studied. A relatively high level of operational synchrony between RTPs in EEG 

amplitude was always present during resting state (Fingelkurts and Fingelkurts, 2010a). 

In the present study the synchronisation process was expressed to a lesser extent in posterior 

EEG channels than in the anterior channels (Fig. 4A and B). This is in line with the work of 

Shishkin (1997) where the author has demonstrated a similar effect, but in the EEG amplitude 

domain. It can be explained that during resting conditions frontal areas are characterised by 

more dynamic transitions between different neuronal assemblies’ operations and by more 

intense involvement in synchronisation process than occipital areas, probably reflecting 

personal identity and past personal experiences (Luria, 1973), coordination of basic drives 

and plans (Raichle and Gusnard, 2005) and complete self-consciousness (Uhtomskiy, 1966). 

It was suggested that exactly these processes are active during rest (Gusnard et al., 2001).  

Both closed and open eyes conditions were characterised by a diverse variety of the most 

frequent SCs with different order of area recruitment (Table 2 and 3; Fig. 5 and 6). Perhaps 

this diversity reflects the poly-operational structure of brain activity during rest, where 

cortical processes are not determined by external stimuli but are driven by free floating 

associations, mental imagery, planning, etc. Indeed, it was demonstrated that ongoing brain 

activity occurs in discontinuous steps and confirms that the cerebral cortex is continuously 

active in wakefulness (for discussion see Fingelkurts et al., 2003b). This is in line with the 

works of Thatcher and John (1977), Herscovitch (1994), Arieli et al. (1996), Tsodyks et al. 

(1999), Raichle et al. (2001), Raichle and Snyder (2007) and others who demonstrated a 
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highly organized intrinsic functional activity (i.e., activity which is not directly related to 

identifiable sensory or motor events) during a resting state. Metabolic data confirm these 

studies. The resting human brain consumes 20% of the body’s energy (even though it 

represents only 2% of total body mass), most of which is used to support ongoing neuronal 

activity (Ames, 2000; Attwell and Laughlin, 2001; Lennie, 2003; Shulman et al., 2004; 

Raichle and Mintun, 2006). At the same time, task-related increases in neuronal metabolism 

are usually small (<5%) in comparison with the large resting energy consumption (Raichle 

and Mintun, 2006). 

Among all types of SCs, those that involved 4–6 cortex areas were dominant during rest 

conditions (closed and open eyes). Perhaps frequency domain coordinated activity of 4–6 

cortex areas is optimal for resting wakefulness. 

4.2. Functional (operational) connectivity during open eyes versus closed eyes 

This study demonstrated that in spite of common general characteristics of the 

synchronisation process for both resting conditions, each of the states had its own 

distinguished peculiarities.  

We found that eyes opening resulted in widening and intensification of synchronization 

process when compared with closed eyes. This was reflected in a higher percent of SC which 

involved 6–8 cortex areas (Fig. 3) and more intense participation of each examined cortex 

area in SCs (Fig. 4A and B) during open eyes when compared with closed eyes condition. 

Recall that synchronisation of RTPs here corresponds to the dynamic temporal coordination 

of shifts among brain operations performed by remote neuronal assemblies (Fingelkurts et al., 

2005). It is assumed that RTPs in the EEG signal reflect the moments of switching between 

the elementary units of informational processing in the brain – operations (Fingelkurts and 

Fingelkurts, 2001, 2005, 2008). In this context, the aforementioned findings perhaps reflect 

more dynamic and wider information processing during open eyes condition in comparison 

with closed eyes. Keeping that in mind we may conclude that changes in the brain functional 

state were accompanied by changes in the poly-operational structure of brain activity. Indeed, 

as it has been shown, the eyes-open resting condition indicates an increase in non-specific 

activation caused by basic sensory input (Gevins et al., 1997; Klimesch, 1999; Klimesch et 

al., 2001) and by an orienting reaction of the brain (Jung, 1953) which reflects general task 
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demands and attentional processes (Sokolov, 1963; Klimesch, 1999; Pfurtscheller and Lopes 

da Silva, 1999; Verstraeten and Cluydts, 2002; Babiloni et al., 2004; Mantini et al., 2007). 

Supposition on more intense information processing during open eyes than during closed 

eyes is supported also by the lesser percent of given SC types within a particular category 

during eyes open condition than in closed eyes condition (Table 2) found in the present study. 

It means that open eyes was characterised by larger number of different types of SCs and as a 

consequence by more dynamic shifts among them compared to those observed during closed 

eyes.  

Additionally, we found that open eyes condition was characterised by unique SCs with 

mostly centro-parieto-occipital topography, whereas closed eyes condition was characterised 

by SCs with mostly fronto-central topography (Fig. 6). Characterisation of closed eyes 

condition by unique specific SCs with mostly fronto-central topography may reflect dominant 

involvement of networks which associated with internal processing (Mantini et al., 2007) and 

with the stimulus-independent thought, mind-wandering and the internal “narrative” 

(Gusnard et al., 2001). In contrast, characterisation of open eyes condition by specific SCs 

with mostly centro-parieto-occipital topology most likely reflects dominant involvement of 

networks which associated with focused attention and visual processing (Mantini et al., 

2007). Thus, spontaneous ongoing oscillatory activity during rest depends on the dynamic 

interplay between distinct functional networks, each characterized by a specific 

electrophysiological signature (SC of particular type). It is assumed that during different 

behavioural and cognitive acts these resting-state-networks (indexed by SC types) would be 

dynamically assembled and modulated forming new specific task-related-networks.  

4.3. Topographic aspects of functional (operational) connectivity 

The inter-channel coordination of SP-segments enables us to characterize EEG from the 

viewpoint of more or less general coordination between its short-term local spectral 

descriptions. Notice that analysis performed in this study does not permit to make any 

inferences on primary generators (sources) of the EEG activity.     

Observed diversity of spatial SP-maps (Figs. 5 and 6) demonstrated that the dynamics of 

topographic variability of short-term SP-segments appear to reflect the piecewise stationary 

process of functional integration of cortex areas. It is suggested that brain activity during 
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resting wakefulness is topographically organized in discrete brain networks – resting state 

networks (Mantini et al., 2007) which functionally shift each other. It is likely that the pattern 

of the functional stabilization of the cortical inter-area relations can be expressed as a mosaic 

of dynamic constellations of different operations executed by remote brain regions – 

“operational modules” (Nunez, 1989; Fingelkurts and Fingelkurts, 2001, 2004, 2005, 2008). 

The lifetime of such spatial operational modules is determined by the duration of the period 

of joint stabilization of the main dynamic parameters of the activity of neuronal assemblies 

which are involved in these modules. At the level of EEG, this process is reflected in 

stabilization of the SPs-segments in corresponding EEG channels that comprises a metastable 

state (Fingelkurts and Fingelkurts, 2004, 2008; Werner, 2007). As has been proposed by 

Kelso (1995) metastability relates to the phenomenon of a constant interplay between the 

autonomous and interdependent tendencies in the system’s (in our case a brain) dynamics 

(see also Bressler and Kelso, 2001). In this context each operational module is a metastable 

spatial-temporal pattern of brain activity because the neuronal assemblies which constitute it 

have different operations/functions and do their own inherent tasks (thus expressing the 

autonomous tendency), while still, at the same time, being temporally entangled among each 

other (and thus expressing the coordinated activity) in order to execute a common complex 

operation or complex cognitive act of a higher hierarchy (Fingelkurts and Fingelkurts, 2004, 

2005; Fingelkurts et al., 2009). 

In this context the participation of cortex areas in the organization of a common functional 

act is reflected not so much in the presence of a shared EEG rhythm in different EEG 

channels (distant neuronal ensembles), but in the systematic coincidences of the moments of 

switching between EEG frequency modes in the cortex areas. It seems that cortical networks 

can display different states of coordination independently of their correlation and coherence, 

using shifts in brain oscillations at multiple frequencies based on the size and configuration of 

the neuronal assemblies involved (Lopes da Silva, 1991). 

4.4. Comparison with surrogate data 

All results of the present study would be difficult to interpret without comparing them with 

similar data obtained for EEG with artificially created complete temporal mismatch of SP-

segments between all 8 EEG channels. The study demonstrated that random combination of 

RTPs of SP-segments “creates” totally different estimates of spatial-temporal stabilization of 
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SP-segments than is observed under conditions when the EEG channels are functionally 

correlated (Figs. 3 and 4). The results of the surrogate tests for statistical validity indicated 

that our findings are indeed caused by coordinated changes of the oscillatory states in the 

EEG and cannot be explained by mere random processes. 

Before coming to the final conclusions, a technical question should be raised: whether the 

reported cortical spatio-temporal modules, within which steady relations are formed by the 

mutual stabilization between the types of SP-segments in each EEG channel are real or are 

affected by the volume conduction between electrodes? The effect of volume conduction on 

presented results is unlikely because (a) Functional connectivity measure used in this study is 

free from EEG signal similarities between different EEG channels and, thus free from direct 

influences of volume conduction because it is the similarity of EEG signals on the scalp that 

is determined to a large degree by volume conduction; (b) Connectivity measure used in this 

study is based on temporal point-to-point coincidences of RTPs (even for remote cortex 

areas), but spreading of electrical activity by volume conduction takes some time especially 

for remote areas. Therefore, whenever synchronisation between cortical areas has time-lag = 

0 ms then functional connectivity measure does not reflect volume conduction; (c) It was 

demonstrated earlier that connectivity measure based on temporal coincidences of RTPs is 

sensitive to the morpho-functional organization of the cortex rather than to the volume 

conduction and/or reference electrode (for relevant details, see Kaplan et al., 2005; 

Fingelkurts and Fingelkurts, 2008, 2010b); (d) If presented results would be determined 

mostly by volume conduction, then surrogate data (where the natural time relations between 

EEG channels were completely destroyed) would not show systematic differences from the 

actual EEG. This however was not the case (see Fig. 3 and 4); (e) Converging evidences 

indicated that EEG synchronization observed for electrodes separated by 4 cm or more is not 

spurious (for discussion see Ward and Doesburg, 2009). In current study it is the case as only 

8 electrodes were used; (f) The accuracy of topographic EEG mapping for determining local 

(immediately under the recording electrode) brain activity was already established by Cook et 

al. (1998) (see also Bullock, 1997; Kaiser, 2000; Freeman, 2003); (g) The skin and skull are 

not considered to be serious frequency filters (Nunez, 1995) and (h) It has been shown that 

EEG and MEG (which is free from volume-conduction effects) offer comparable spatial 

resolutions on the order of several millimetres (Cohen et al., 1990; Ingber, 1991). Dipole 

localization accuracy of 7–8 mm for EEG and 3 mm for MEG has been demonstrated using a 
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human skull phantom (Leahy et al., 1998). Thus, spatial resolution of an EEG might be better 

than widely believed.  

Additionally, the presented results cannot be attributed to the EEG recording with linked ear 

reference electrode or volume conduction for the following reasons: (a) The spatial 

synchrony could not be attributed to referential recording, because an event occurring at the 

reference electrode would appear to be the same on all channels and between actual and 

surrogate EEGs, whereas the number of RTPs varied across the channels and differed 

significantly between actual and surrogate EEGs; (b) amplitude in the delta, theta, alpha, and 

beta bands did not vary significantly as a function of reference (Ferree et al., 2001); (c) the 

occipital and frontal regions clearly showed different accentuations in their EEG effects and 

(b) our analysis revealed the existence of high diversity of SCs and high number of 

asymmetric SCs. Thus, taken together these arguments we may conclude that reported results 

in this study are virtually unaffected by volume conduction and chosen reference electrode. 

 

Concluding remarks 

Taken together, the results of this study demonstrated for the first time the existence of non-

random temporally coordinated patterns of switching (on/off) moments in EEG rhythms. 

Such synchrony in EEG frequency domain was observed independently from functional state 

of the brain (closed eyes vs open eyes conditions). However, topographic extent and the 

intensity of the synchrony in EEG frequency domain were functionally dependent: different 

for closed and open eyes. It was suggested that changes in the brain functional state during 

rest were accompanied by changes in the poly-operational structure of brain activity (indexed 

by temporally coordinated changes in EEG SPs description) (for discussion see Fingelkurts et 

al., 2003b). 

The fact that observed results were significantly different from surrogate data reflects a non-

occasional/non-random nature of spatio-temporal organization of EEG in the frequency 

domain. Thus, the process of operational synchrony in EEG frequency domain is not an 

epiphenomenon of brain activity.  
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Analysis of topographic SP-segments variability may permit researches to trace episodes of 

the metastable cortical inter-area cooperations independently on partial correlation and/or 

coherency between the local EEGs. 

Considering that principles of operational synchrony were demonstrated for EEG frequency 

domain (present study), for EEG amplitude domain (Fingelkurts and Fingelkurts, 2001, 2005, 

2006, 2008, 2010a) and to some extent for EEG phase domain (Freeman and Rogers, 2002; 

Freeman and Holmes, 2005; Kozma et al., 2005) it is reasonable to suggest that operational 

synchrony is a universal phenomenon for different dimensions of electromagnetic brain field 

in which complex brain functioning is reflected. 

Further studies should extend presented analysis to a larger number of EEG channels and to 

broader frequency band including gamma frequency range to capture more detail picture of 

operational synchrony. 
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Appendix 

A probability-classification analysis of the short-term EEG SPs 

The general idea of probability-classification analysis is that sequential single EEG SPs are 

classified within each channel of 1-min EEG using a set of standard SPs.  
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Probability-classification analysis of the short-term EEG SPs was performed at several steps.  

During the first step, standard SPs were generated from the data itself (not before-hand). The 

set of standard SPs was formed automatically using heuristic procedures and Pearson’s 

correlation coefficients (CC): A pool of SPs (n = 157,224) was built from all the SPs of the 

entire EEG signals (all locations) for all subjects and both conditions. From this pool, all 

identical SPs with dominant power peaks (peaks that rise significantly above the general 

average) were counted automatically. The peak detection was based on normalizing the SP to 

within-SP relative percentages of magnitude, where acceptance is achieved when the peak 

exceeds a given (60%) percent-magnitude (100% corresponds to the magnitude of the highest 

peak within the SP). According to the preliminary study, this value has proved to be the most 

effective for peak detection.  

The set of SPs with the highest count were the most probable candidates to form the “set of 

standard SPs.” Only those SPs with a minimum mutual correlation were selected. As a result, 

the standard set included 26 SPs in this study (Fig. 7).  

The main frequency peaks for each SP class are: 1 - 2.5 Hz, 2 - 4 Hz, 3 - 5.5 Hz, 4 - 7 Hz, 5 - 

10 Hz, 6 - 11.5 Hz, 7 - 13 Hz, 8 - 2.5-4 Hz, 9 - 2.5-5.5 Hz, 10 - 3-6.5 Hz, 11 - 2.5-8.5 Hz, 12 - 

2.5-10.5 Hz, 13 - 2.5-12.5 Hz, 14 - 4-8.5 Hz, 15 - 4-10.5 Hz, 16 - 5.5-10.5 Hz, 17 - 6.5-12.5 

Hz, 18 - 8.5-11.5 Hz, 19 - 9.5-10.5 Hz, 20 - 9.5-11.5 Hz, 21 - 2.5-4.5-8.5 Hz, 22 - 2.5-4.5-

10.5 Hz, 23 - 3-6.5-11 Hz, 24 - 2.5-3.5-5.5-9.5 Hz, 25 - 2-6.5-8.5-12.5 Hz, 26 – polyrhythmic 

SPs (the category of unique SPs which is comprised of SPs which reflect transitory and/or 

noisy/disorganised episodes in the EEG).  

Notice that there is no universal set of standard SPs: different EEG data (different study) 

requires formation of new set of standard SPs. According to our experience the sets of 

standard SPs from different studies overlap significantly, but they are not identical neither in 

number of SPs, nor in SP’s types. 

During the second step, the initial matrix of cross-correlations between standard and current 

individual SPs of analyzed EEG was calculated for each channel separately (Fig 8). The 

current SPs that their CC passed the acceptance criteria of r ≥ 0.71 were attributed to their 

respective standard classes. Therefore, the same current SPs may be included simultaneously 
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into different standard classes. The CC acceptance criteria r was determined such as for r ≥ 

0.71 more than 50% of the SP variances were coupled/associated. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. A set of standard SPs which was found automatically for a given EEG data. 
The main frequency peaks for each SP class are: 1 - 2.5 Hz, 2 - 4 Hz, 3 - 5.5 Hz, 4 - 7 Hz, 5 - 
10 Hz, 6 - 11.5 Hz, 7 - 13 Hz, 8 - 2.5-4 Hz, 9 - 2.5-5.5 Hz, 10 - 3-6.5 Hz, 11 - 2.5-8.5 Hz, 12 - 
2.5-10.5 Hz, 13 - 2.5-12.5 Hz, 14 - 4-8.5 Hz, 15 - 4-10.5 Hz, 16 - 5.5-10.5 Hz, 17 - 6.5-12.5 
Hz, 18 - 8.5-11.5 Hz, 19 - 9.5-10.5 Hz, 20 - 9.5-11.5 Hz, 21 - 2.5-4.5-8.5 Hz, 22 - 2.5-4.5-
10.5 Hz, 23 - 3-6.5-11 Hz, 24 - 2.5-3.5-5.5-9.5 Hz, 25 - 2-6.5-8.5-12.5 Hz, 26 – polyrhythmic 
SPs.  
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Figure 8. Second, third and fourth steps of a probability-classification analysis of the 
short-term EEG SPs. 
s-SPj – standard spectral pattern of type j, c-SPi – current spectral pattern of type i, a-SPj – 
actual spectral patterns of type j, CC – coefficient of correlation. 
 

During the third step, the current SPs included in a particular class were averaged within this 

class (Fig. 8). The same procedure was performed for all classes separately for each EEG 

channel. On the back of this, the standard spectra were reconstructed but this time taking into 

account the peculiarities of the spectral description of concrete channel of the particular EEG. 

In this way an “actualization” of the initial standard SP set was performed. In other words, 

standard SPs were converted into so-called actual spectral patterns. Notice that the main 

frequency peaks in the actual SP of every class stay the same as in the corresponding 

standard SP’s classes. However, overall shape of the power spectrum was automatically 
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modulated in the direction to better represent the multitude of all SPs within each class in a 

given EEG channel. 

An actual SP set was in turn used for the fourth step – the final classification of the current 

SPs: each of current SPs was attributed to only one actual SP class for which the CC was the 

maximum of the set of r ≥ 0.71 (Fig. 8). 

The probability-classification technique employs two correction algorithms to achieve a 

significant reduction in the variance of single spectral estimations and to take into account the 

relationship between neighbour frequencies in the frequency continuum (Kaplan et al., 1999; 

Fingelkurts et al., 2003a): (a) spectrum glide smoothing, (b) choosing the maximum CC out 

of the three values of the correlation function, which was calculated between the standard SP 

and the current SP on zero shift and on double-side shift by one step (±0.5 Hz). According to 

tests and modelling calculations, the latter procedure was chosen in this study. This justifies 

the use of individual short-term SPs and increases the sensitivity of this analytical approach 

in revealing the dynamics of EEG oscillatory patterns. This SP classification method made it 

possible to identify up to 100% of the individual single spectra in the EEGs due to the 

algorithm’s ability to adapt to local signals. Therefore at every time step a valid classification 

was reached, i.e., there was no 'undecided' category. 

Considering that a single EEG spectrum illustrates the particular integral dynamics of tens 

and hundreds of thousands of neurons in a given cortical area at a particular point in time 

(Dumermuth and Molinari, 1987), it can be said that the SPs within each class are generated 

by the same or similar dynamics with the same or similar driving force. SPs from different 

classes, however, have had in effect different driving forces and therefore have been 

generated by different dynamics (Manuca and Savit, 1996). In this case, one type of SP may 

be considered as a single event in EEG phenomenology from the viewpoint of its spectral 

characteristics (Fingelkurts and Fingelkurts, 2010b). In this context, this analytical approach 

implicitly considers the non-stationarity of EEG (for the review on EEG non-stationarity see 

Kaplan et al., 2005).  

As a result of the probability-classification technique, each current SP was labelled according 

to the index of the class to which it belongs. Thus, a sequence of SP labels that represents the 

sequence of EEG oscillatory states through which the system passes was obtained. Hence, 

each EEG signal was reduced to a sequence of individually classified SPs (Fig. 1). 
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