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Abstract: Spectral decomposition, to this day, still remains the main analytical paradigm for the analysis of EEG oscilla-
tions. However, conventional spectral analysis assesses the mean characteristics of the EEG power spectra averaged out 
over extended periods of time and/or broad frequency bands, thus resulting in a “static” picture which cannot reflect ade-
quately the underlying neurodynamic. A relatively new promising area in the study of EEG is based on reducing the sig-
nal to elementary short-term spectra of various types in accordance with the number of types of EEG stationary segments 
instead of using averaged power spectrum for the whole EEG. It is suggested that the various perceptual and cognitive op-
erations associated with a mental or behavioural condition constitute a single distinguishable neurophysiological state 
with a distinct and reliable spectral pattern. In this case, one type of short-term spectral pattern may be considered as a 
single event in EEG phenomenology. To support this assumption the following issues are considered in detail: (a) the rela-
tions between local EEG short-term spectral pattern of particular type and the actual state of the neurons in underlying 
network and a volume conduction; (b) relationship between morphology of EEG short-term spectral pattern and the state 
of the underlying neurodynamical system i.e. neuronal assembly; (c) relation of different spectral pattern components to a 
distinct physiological mechanism; (d) relation of different spectral pattern components to different functional significance; 
(e) developmental changes of spectral pattern components; (f) heredity of the variance in the individual spectral pattern 
and its components; (g) intra-individual stability of the sets of EEG short-term spectral patterns and their percent ratio; (h) 
discrete dynamics of EEG short-term spectral patterns. Functional relevance (consistency) of EEG short-term spectral pat-
terns in accordance with the changes of brain functional state, cognitive task and with different neuropsychopathologies is 
demonstrated. 

Keywords: Electroencephalogram (EEG) phenomenology, short-term spectral patterns, neuronal assemblies, EEG oscillatory 
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“…there does appear to be important information about how 
the brain works contained in the empirically useful but in-

scrutable oscillations  

of the EEG” Jones S. [1] 

INTRODUCTION 

Ongoing spontaneous activity at the cortical level (elec-
troencephalogram – EEG) is extensively used in brain re-
search and for clinical purposes. It appears that as a neuro-
physiological phenomenon EEG has its own peculiarities, 
regularities and rules of organization [2-6] (for the reviews 
see [7-10]). Only when one knows these characteristics, it is 
possible to make proper use of EEG as a tool and to give 
adequate interpretations of the obtained data. In fact, it is 
impossible to design a cognitive EEG experiment not biased 
by assumptions (explicit or implicit) regarding brain dynam-
ics and the statistical characteristics of EEG, particularly 
with respect to the extent of stationarity and temporal dy-
namics. In connection to this, a much deeper understanding 
of brain dynamics which is reflected in EEG is essential for 
genuine long-term progress in psychophysiological and  
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cognitive sciences. However, studies on structural aspects of 
the EEG signal are sparse in literature. Therefore, it is impor-
tant to fill this gap. 

EEG is the result of dendritic and postsynaptic currents 
of many cortical neurons firing in nonrandom partial syn-
chrony [11, 12]. It was demonstrated that neural activity pat-
terns measurable at the macro-level by EEG are correlated 
with underlying neural computations [13-18]. Thus, EEG 
provides a direct measure of cortical activity with millisec-
ond temporal resolution. Currently there is common agree-
ment in the field of cognitive neuroscience that EEG does 
reflect conditions, functional properties and global states of 
brain functioning and is closely connected to information 
processing and cognitive activity [4, 19-23]. The interaction 
of large populations of neurons gives rise to rhythmic elec-
trical events in the brain, which can be observed at several 
temporal scales – EEG oscillations. They are the basis of 
many different behavioural patterns and sensory mechanisms 
[24, 25]. 

Electrical oscillations in neural networks have been in-
tensively studied over the past years: Basar et al. [26-28], 
Lopes da Silva [29], Klimesch [30-34], just to mention a 
few. As a result of this research, it is suggested that the oscil-
latory activity of neuronal pools reflected in characteristic 
EEG rhythms constitutes a mechanism by which the brain 
can regulate changes of a state in selected neuronal networks 
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to cause qualitative transitions between modes of informa-
tion processing [29]. Different oscillatory patterns may be 
indicative of different information processing states, and it 
has been proposed that the oscillatory patterns play an active 
role in these states [35, 36]. 

Since an EEG is widely referred to as a nonstationary 
signal with varying characteristics (for the reviews see [8, 
9]), EEG oscillations are expected to be dynamic in nature 
[37, 38]. It means that EEG signal has different characteris-
tics in various time moments. It was demonstrated that in the 
phenomenon of EEG variability, not only the stochastic fluc-
tuations of the EEG parameters, but also the temporal struc-
ture of the signal is reflected [3, 39] (for the review see [7]). 
It is assumed that EEG variability or nonstationarity is the 
reflection of structural or piecewise stationary organization 
of the signal. Piecewise stationary structure of EEG is con-
sidered as a result of “gluing” of stationary casual processes 
with different probability characteristics (for the reviews see 
[7-10]) Fig. (1). 

 
 

Fig. (1). Piecewise stationary organization of EEG. S1-S8 = Piece-
wise stationary segments; GS1-GS8 = Generator system states; ver-
tical bars represent boundaries of EEG piecewise stationary seg-
ments; arrows illustrates relations between generator system states 
and piecewise stationary segments. 
 

The abrupt transition from one segment to another in this 
sense reflects the changes of the generator system state or 
changes in the activity of the two or more systems [3, 40]. 
There is growing neurophysiological evidence that brain 
activity involves the transient formation and disassembling 
of interconnecting cortical neuronal assemblies [41] which 
are understood to generate the EEG [42]. Each transient neu-
ronal assembly is in the steady quasi-stationary state which 
signifies the functional cortical microstate [40]. Therefore, a 
microstate is a short-lived steady self-organised operational 
unit. Activity within each microstate is stable (or quasi-
stable) and is likely to represent a fingerprint of the function-
ally distinct neuronal network mode, which emerges at the 
mesoscopic1 level. Such a mode is dynamically regulated by 
interactions within a homeostatic system that are mediated 
by many different neurotransmitters on one side and func-
tional tasks or various perceptual and cognitive operations 
associated with a mental or behavioral condition on the 
other. In this context, microstates in specific neuronal net-
works, or cortex areas, contribute to information processing, 
and may be the essence of brain functioning [43-46]. Many 

                                                
1 Mesoscopic scale refers to the coordinate behavior of local neuronal assemblies as 
measured by local field potentials and EEG [42]. According to Freeman [14, 42], 
mesoscopic effects operate at a spatial scale of ~1 cm and temporal scale of ~100 ms 
and, thus, mediate between the two extremes of cortex organization: single neurons and 
the major lobes of the forebrain.  

different microstates correspond to any one particular macro-
state. In such a way, the dynamics of brain activity within a 
given macrostate can be considered as a sequence of rela-
tively stable brain microstates which are reflected in EEG as 
piecewise stationary segments [47]. Consecutive macrostates 
in its turn comprise a new sequence in another time-scale. 
Such functional EEG structure comprises hierarchical multi-
variability which reflects the poly-operational structure of 
brain activity [48, 49].  

Spectral decomposition, to this day, still remains the 
main analytical paradigm for analysis of EEG oscillations 
due to the importance of oscillations as a general phenome-
non of neuronal activity. The power spectral density (power 
spectrum) reflects the “frequency content” of the signal or 
the distribution of signal power over frequencies. Addition-
ally, a power spectrum is a compact and natural representa-
tion of steady state neural activity [50]. The comparison of 
absolute and relative changes in frequency bands of the 
power spectrum has revealed important information about 
the electrical activity of the brain and its relationship to hu-
man behaviour [51]. 

However, conventional spectral analysis assesses the 
mean characteristics of the EEG power spectra averaged out 
over extended periods of time and/or broad frequency bands 
in order to obtain statistically reliable characteristics. In that 
case, averaging procedures (resulting in a “static” picture) 
might not only mask the original signal dynamic aspects, but 
also give rise to ambiguous data interpretation [52-54]. In 
fact, and as explored in our early work [5, 55] the total 
power spectrum does not characterize each of the individual 
power-spectra for each EEG segment Figs. (2, 3). 

Fig. (2) illustrates that averaged EEG power spectra even 
during resting conditions with closed eyes are characterized 
by very high variability (grey areas in the insertions) inde-
pendently of the EEG channel. This is in line with the work 
of Oken and Chiappa [38] who found that the power vari-
ability of the main EEG spectral components for sequential 
short (5-10 sec) EEG segments is 50-100%. Such variability 
is due to the fact that piecewise stationary EEG segments are 
described by different classes of spectral patterns (SPs) [2, 3, 
56]. Indeed, the same EEG channels were characterized 
by16-21 SP classes (vertical bars in the histograms, Fig. 2) 
thus reflecting multivariability of brain activity, where SP 
types emerge, persist for some time and then disappear to be 
replaced by other SP types [5]. This suggests that ongoing 
brain activity occurs in discontinuous steps and confirms that 
the cerebral cortex is continuously active even in wakeful-
ness. The frequency of each SP type occurrence reflects the 
probability for the occurrence of particular neuronal dynam-
ics which altogether constitute a dynamic repertoire of brain 
activity in particular functional state [6]. Averaged power 
spectra are “blind” to this type of information. 

Figs. (3 and 4) illustrate the other major problems associ-
ated with average power spectra. 

The average characteristics of a signal predominantly re-
flect an influence of high-amplitude segments of the long 
EEG epochs, thereby totally obscuring the low-amplitude 
desynchronized segments [57] Fig. (3.I). Additionally, it is 
impossible to derive information on temporal dynamics of 
brain activity from average power spectrum Fig. (3.II). In-
deed, if the EEG signals ‘1’ and ‘2’ have different temporal 
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structure, but the same set of elemental EEG segments then 
the mean characteristics of such signals would be virtually 
the same. Therefore, averaging of EEG spectral components 
most likely shows the balance of diverse EEG characteristics 
rather than actual – “principal” – processes over the total 
signal. Hence, when examining the average power spectrum, 
it is not clear whether the observed effect is real (not the 
“virtual” result of averaging procedure), stable and typical 
for the whole analyzed signal. For example, it is not clear: 
(a) whether temporal stability in the total power of a particu-
lar brain oscillation reflects the stability in the number of its 
occurrence per, for example, minute rather than the stability 
of the average oscillation’s amplitude, and (b) whether the 

stability of total power of a particular brain oscillation is 
typical for the whole analyzed signal or a small portion of it. 

Moreover, while analysing an average power spectrum 
there may be difficulties in its meaningful interpretation if 
the spectrum is not matched to the EEG nonstationary struc-
ture Fig. (4).  

From the Fig. (4) it can be seen that to explain the aver-
age power spectrum effect (state II in comparison with state 
I) at least four alternative interpretations can be given. Un-
fortunately, it is impossible to give privilege to any of them 
based solely on the average power spectrum and without the 

 
Fig. (2). Example of mean power spectra averaged out over one-minute EEG (in the insertions), their variability (grey areas) and correspon-
dent relative presence of each individual power spectra (vertical bars) for each EEG channel separately. EEG registered during eyes closed 
resting condition. 

The x-axis displays the labels (numbers) of the classes of the individual spectral patterns (SP) from 0 (polyrhythmic SPs) to 28 and the fre-
quencies of their main peaks. The y-axis displays the share of the corresponding SP class in the percentage from the total number of the indi-
vidual SPs. O2 = occipital, P4 = parietal, C4 = central, and F4 = frontal EEG channels placed at the right hemisphere of the brain, whereas O1 = 
occipital, P3 = parietal, C3 = central, and F3 = frontal EEG channels placed at the left hemisphere of the brain according to 10/20 International 
System of electrode placement. All electrodes were referred to linked ears (linked-ears reference was obtained digitally from two separate, 
impedance-checked channels). Raw EEG signal was amplified and filtered in 0.5-30 frequency range and digitized at a sampling rate of 128 
Hz by a 12-bit analog-to-digital converter with resolution of 1 V/bit. The impedance of the recording electrodes was always below 5 k . Hz 
= frequency; V = microvolt; polyrhythmic SPs = reflect disorganised activity (a mixture of activity of small neuronal subpopulations each 
with its own mode). 
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information on piecewise stationary organization of the 
EEG. 

From these examples it follows that the activity of some 
brain processes may be reflected in the EEG as changes of 
its structure without changes in the average spectral charac-
teristics of the signal. 

Additionally, the frequency bands are predefined and 
taken in isolation from each other in the vast majority of 
EEG studies. This does not permit researchers to examine 
behaviour of the actual/natural composition of EEG oscilla-
tions involved. At the same time, brain functioning is repre-
sented by multiple oscillations [27]. According to the super-
position principle introduced by Basar et al. [26], brain ac-
tivity is accompanied by superimposed multiple EEG oscil-
lations in many frequency bands (for the review, see [28]).  

All these observations have, however, been neglected in 
basic cognitive EEG research. 

A relatively new promising area in the study of EEG dur-
ing rest and cognitive processing is based on the reduction of 
the signal to the elementary spectra (SPs) of various types in 
accordance with the number of types of EEG stationary 
segments instead of the usage of averaged power spectrum 
for the same EEG [2, 3, 5, 6, 56, 58]. It has been suggested 
that the operational elements of behavioral and mental activ-
ity are originated in the periods of short-term metastable2 
states of the whole brain or its individual subsystems (see 

                                                
2 Metastability in the brain refers to competition of complementary 
tendencies of cooperative integration and autonomous fragmentation among 
many distributed brain areas [9, 22, 49, 59]. The interplay of these two 
tendencies (autonomy and integration) constitutes the metastable regime of 
brain functioning [43, 48], where local (autonomous) and global (integrated) 
processes coexist as a complementary pair, not as conflicting principles 
[60]. 

reviews [9, 22, 43, 48, 49, 59, 60]). The results of these stud-
ies suggest that the quasi-stationary segments reflect the op-
erational acts of nervous activity which continue to occur 
even without external stimulation. From this viewpoint, it is 
justified to use the calculation of individual spectral estima-
tions of the elementary EEG segments. 

 

 
 

Fig. (4). Average power spectrum effect and piecewise stationary 
organization of EEG (scheme). Alternative interpretations of the 
average power spectrum effect (changes from state I to state II) are 
illustrated. 
 

The work of Bodenstein and Praetorious [58], Bodunov 
[2], Jansen et al. [3, 56] and Fingelkurts et al. [5, 6] sug-
gested a phenomenological model of the EEG. Considering 
that a single EEG spectrum illustrates the particular integral 
dynamics of tens and hundreds of thousands of neurons in a 
given cortical area at a particular point in time [50], it can be 
suggested that the SPs within each class are generated by the 
same or similar dynamics with the same or similar driving 
force [61]. SPs from different classes, however, have had in 
effect different driving forces and therefore have been gener-
ated by different dynamics. Therefore, the various perceptual 
and cognitive operations associated with a mental or behav-
ioural condition is thought to constitute a single distinguish-
able neurophysiological state with a distinct and reliable SP 
[62, 63]. In this case, one type of SP may be considered as a 
single event in EEG phenomenology.  

In order to accept the hypothesis that EEG short-term SP 
of particular type may be considered as a single event in 
EEG phenomenology the following general propositions 
should be confirmed:  

 

 

 

 

 

 

 

 

Fig. (3). Piecewise stationary organization of EEG and average 
power spectrum (scheme).  
 
(I) Two EEG signals with alpha segment of different amplitude and 
duration and correspondent average power spectra. A = alpha seg-
ment with very high amplitude, a = alpha segment with very low 
amplitude, t = theta segment. 

(II) Two EEG signals with the same number and types of segments, 
but with different temporal order of these segments. On the right 
there are correspondent average power spectra. a = alpha segment, 
b = beta segment, t = theta segment.  

Average power spectra

µkV2

At t

EEG

1

I

Average power spectra

µkV2

Hz10

At t

a

EEG

1

2

a a at b1

I

II

Average power spectra

µkV2

Hz10

µkV2

Hz10

At t

a

EEG

1

2

a a at b

atbaa

1

2

I

II

Average power spectra

µkV2

Hz10

µkV2

Hz10

At t

a

EEG

1

2

a a at b

atbaa

1

2

I

II Average power spectra

µV2 µV2

Average power spectra

µV2

Hz10 Hz10

µV2

A A

Average power spectra

µV2

Hz10 Hz10

µV2

A A A A

Amplitude of A‐segments is the same; 
duration of A‐segments  is the same;

A A

EEG

Average power spectra

µV2

Hz10 Hz10

µV2

A A A A

A A A A

A A A
EEG segments of different type

A - alpha activity

Amplitude of A‐segments is the same; 
duration of A‐segments  is the same;

Amplitude of A‐segments decreased;
duration of A‐segments  is the same;
number of A‐segments is the same

A li d f A d d

A A

EEG

Average power spectra

µV2

Hz10 Hz10

µV2

A A A A

A A A A

A A A
EEG segments of different type

A - alpha activity

A A A A

Amplitude of A‐segments is the same; 
duration of A‐segments  is the same;

Amplitude of A‐segments decreased;
duration of A‐segments  is the same;
number of A‐segments is the same

Amplitude of A‐segments decreased;
duration of A‐segments  is  the same;

A A

EEG

Average power spectra

S T A T E    I S T A T E   II

µV2

Hz10 Hz10

µV2

A A A A

A A A A

A A A
EEG segments of different type

A - alpha activity

A A A A

Amplitude of A‐segments is the same; 
duration of A‐segments  is the same;

Amplitude of A‐segments decreased;
duration of A‐segments  is the same;
number of A‐segments is the same

Amplitude of A‐segments decreased;
duration of A‐segments  is  the same;

Amplitude of A‐segments is the same;
number of A‐segments is the same;
duration of A‐segments decreased

A A

EEG



134    The Open Neuroimaging Journal, 2010, Volume 4 Fingelkurts and Fingelkurts 

• Local EEG short-term SP of particular type should re-
flect the actual state of the neurons in underlying 
network not just a volume conduction; 

• Morphology of EEG short-term SP should reflect the 
state of the underlying neurodynamical system i.e. 
neuronal assembly; 

• Different SP components should reflect a distinct 
physiological mechanism; 

• Different SP components should have distinct func-
tional significance; 

• SP components should exhibit developmental 
changes; 

• The variance in individual SP and its components 
should be predominantly determined by heritable fac-
tors; 

• The sets of EEG short-term SPs and their percent ra-
tio should exhibit intra-individual stability, thus being 
reliable over periods of time; 

• EEG short-term SPs should exhibit discrete dynam-
ics. 

In the following sections we will consider each of these 
propositions in detail.  

Relationship Between Local EEG Short-Term SP of Par-
ticular Type, the Actual State of the Neurons in Underly-

ing Network and Volume Conduction  

The possibility for extracting physiological information 
on collective network activity from an EEG has been dem-
onstrated [15-18]. Indeed, collective dynamics in complex 
systems that consist of interacting subunits can often be cap-
tured by a single or few macroscopic observables, which are 
named the order parameters [22, 64, 65]. It is assumed that a 
single short-term EEG SP illustrates the particular integral 
dynamics of tens and hundreds of thousands of neurons in a 
given cortical area at a particular point in time [50].  

However, there is no simple (one-to-one) relation be-
tween a power spectrum computed from short epochs of on-
going EEG and the actual state of the neurons in the underly-
ing network: many different configurations of firing neurons 
can give rise to a particular short-term spectrum (so called 
many-to-one relation). Here the relation is, at best, statistical. 
At the same time, the same configuration of firing neurons 
cannot give rise to two (or more) different short-term spec-
tra. Thus, two different short-term power spectra very likely 
originated from two different configurations of firing neu-
rons [61]. Consequently, short-term SP reflects a particular 
class of neurons’ activities, where each of the activities has 
something in common with the others within the class (one-
class–to-one relation). Moreover, two classes of neurons’ 
activity do not overlap (otherwise the same configuration of 
firing neurons could give rise to two or more different short-
term spectra, which is impossible).  

Class-to-one relation, perhaps, serves the brain as a 
mechanism of multivariability reduction and increases brain 
adaptability [6, 66]. The same final result – oscillatory state 
(indexed by short-term SP), may be achieved by one of 
many different alternative neurons’ activities within the 
class, depending on the peculiarities of the situational con-

text (homeostatic state, past activity, present needs, and con-
templated consequences). In the functional terms, a “com-
promise” based on conserving energy resources and on 
agreement between intrinsic goals and motivational states 
permits the brain to “select” only those configurations of 
firing neurons that are useful in accomplishing an organism’s 
actual goal [54]. Thus, a solution to the integrative brain 
functioning is therefore defined as the settling of the entire 
system into a metastable state of best fit (for the review, see 
[9, 48]).  

An important related issue is the influence of volume 
conduction on local EEG SP. In spite of common belief that 
volume conduction determines largely the local SP, close 
inspection of experimental, analytical and theoretical studies 
suggest something else. 

(1) Several studies demonstrated that spatial resolution of 
EEG might be better than widely believed. It has been shown 
that EEG and MEG (which is free from volume-conduction 
effects) offer comparable spatial resolutions on the order of 
several millimetres [67, 68]. Indeed, dipole localization3 ac-
curacy of 7-8 mm for EEG and 3 mm for MEG has been 
demonstrated using a human skull phantom [69]. The inclu-
sion of anisotropic volume conduction in the brain was 
found to have a minor influence on the topology of EEG and 
MEG (and hence source localization) [70].  

(2) Additionally, covariance between neighboring elec-
trodes across cortex functional boundaries (e.g., parietal to 
temporal areas) was much smaller than covariance within 
functional regions (e.g., left parietal to midline parietal area), 
indicating that multiple distinct functional areas are assessed 
by topographic EEG [71, 72]. 

(3) The local synchronized behavior of neural assemblies 
leads to fluctuations in local field potentials (LFPs) that can 
be measured using EEG [12]. Indeed, experimental findings 
demonstrated that the probabilities of firing of neurons ob-
served singly and in small groups simultaneously are in close 
statistical relationship to the EEG recorded in the near vicin-
ity [14, 73, 74]. Therefore the EEG can provide an experi-
mental basis for estimating the local mean field of contribu-
tory neurons. 

(4) Important work came from Cook et al. [75] who 
demonstrated experimentally the accuracy of topographic 
EEG mapping for determining local (immediately under the 
recording electrode) brain activity (see also [76-78]). Cook et 
al. examined the associations between EEG power spectra 
and cerebral perfusion underlying the electrode to determine 
the accuracy with which power measure characterises local 
cerebral measures. Cerebral perfusion was measured with 
H2

15O positron emission tomography registered in parallel 
with EEG. The study demonstrated that there are statistically 
significant linear relationships between EEG power and per-
fusion in the majority of frequency bands [75]. This finding 
is in line with ealier study of Inouye et al. [79], where the 
authors demonstrated that endogenous EEG activity which 
originated from an underlying cortex area had contributed 
the most to the spectral power measured from the given EEG 

                                                
3 One should remember that depending on which algorithm is used one might obtain 
very different results in source localization. For instance, when applying a dipole 
model the result will very much depend on the preassumptions that were made when 
determining the number of dipolar sources. 
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electrode. Whereas exogenous EEG activities which origi-
nated from other cortical areas contributed insignificanly to 
spectral power of the same EEG electrode. Thus the de-
scribed works suggest that topographic EEG mapping can 
accurately reflect local brain function and it is comparable to 
other topographic methods. 

(5) The skin and skull are not considered to be serious 
frequency filters [11]. Robinson et al. [80] demonstrated also 
that there is little effect of volume conduction on the shape 
of the EEG power spectrum below about 25 Hz and spatial 
filtering is significant only for frequencies above 25 Hz. No-
tice that approximately 98% of EEG spectral power lies be-
low 25 Hz [81]. Therefore, 98% of spectral power is virtu-
ally unaffected by volume conduction. 

 (6) If the influence of volume conduction on the SP is 
predominant then one should expect the same type of SP 
over the whole cortex (or its bigger parts) during the same 
observation. However, analysis of the composition of EEG 
short-term SPs in different EEG channels demonstrated that 
each EEG channel or small group of channels has its own SP 
set [5]. Additionally, analysis of EEG short-term SP types in 
different EEG channels within the same observation revealed 
that the same type of SP can be observed simultaneously in 
two EEG channels in 70% of observations during one-
minute EEG (notice that in the majority of cases these were 
homologous EEG channels: for example O1-O2) Fig. (5). The 
same type of SP characterized simultaneously three EEG 
channels only in 36% of observations (P<0.001-P<0.0001). 
For four EEG channels this value dropped significantly to 
16% (P<0.001-P<0.0001). For five, six and seven EEG 
channels this value was very small: all were below 5% 
(P<0.0001-P<0.00001). The situation where eight EEG 
channels were characterized by the same type SP was not 
observed at all Fig. (5). Approximately in 2% of the observa-
tions each EEG channel was characterized by different type 
of SP Fig. (5).  

Within-subject test-retest (indexed by the Spearman rank 
correlations test – R and coefficient of determination – R2) of 
the number of EEG channels which are characterized by the 
same type of SP within the same observation demonstrated 
very high reliability: R = 0.98-0.99, R2 = 0.96-0.98 (for dif-
ferent subjects). Repeated assessments were done at 1-2 
week intervals for each subject. 

The described results suggest that different EEG channels 
tend to be characterized by different types of EEG short-term 
SPs. Therefore, EEG short-term SPs are mainly determined 
by underlying neurodynamic and similarity of SPs is reflects 
morpho-functional organization of the cortex rather than the 
effect of volume conduction. 

(7) The influence of volume conduction on SPs can be 
estimated by comparing the composition of SP types and 
their percent ratio for EEG and MEG registered in parallel. It 
is well known that MEG is free from volume-conduction 
effects. Therefore, if volume conduction affects largely SPs 
than the parameters of the composition of SP types and their 
percent ratio should be different for EEG and MEG regis-
tered in parallel. However, analysis of these parameters has 
demonstrated that composition of SP types and their percent 
ratio for EEG and MEG registered in parallel did not differ 
significantly [55], thus suggesting that volume conduction 
effects on SP are insignificant.  

Considering the aforementioned findings one may sug-
gest the existence of statistical heterogeneity (anisotropy) of 
the electromagnetic field in regard to neurodynamics within 
quasi-stable periods in regional EEGs. Therefore an alterna-
tive view as to the dominant role of volume conduction in 
determination of local SP can be proposed. 

Different brain regions show different dominant frequen-
cies, and in some cases show multiple “active” frequencies. 
Electrical activity of each brain region is homeostatically and 
functionally regulated, resulting in predictable frequency 
composition of the background EEG. Indeed, EEG frequen-
cies are determined by the intrinsic properties of the neurons, 
internal states and functions of brain regions and the overall 
activity of the brain. The frequency in turn defines the chan-
nel of communication [83]. That is, cortical oscillators com-
municate only with those oscillators that have appropriate 
frequencies [84]. They do not communicate with the other 
oscillators even though there might be synaptic connections 
between them. Thus, various assemblies of oscillators can 
process information without any cross interference. There-
fore, by changing the frequency content of bursts and sub-
threshold oscillations, the brain determines who talks to 
whom at any particular moment [85]. In this sense, the brain 
can rewire itself dynamically on a time scale of milliseconds 
without changing the synaptic hardware. 

 

 

 

 

 

 

 

Fig. (5). The number of EEG channels which are characterized by 
the same type of SP within the same observation. Data averaged 
across 10 EEGs (4 randomly selected subjects). Notice that the sum 
is 133.5%. This is because several groups of EEG channels which 
are characterized by different SP types can be observed simultane-
ously during a single observation. For example, during one obser-
vation two EEG channels can be characterized by SP of type X, 
another two channels - by SP of type Y and another 3 channels - by 
SP of type Z. 
 
All electrodes were referred to linked ears (linked-ears reference 
was obtained digitally from two separate, impedance-checked 
channels). Raw EEG signals were amplified and filtered in 0.5-30 
frequency range and digitized at a sampling rate of 128 Hz by a 12-
bit analog-to-digital converter with resolution of 1 V/bit. The im-
pedance of the recording electrodes was always below 5 k . Indi-
vidual SPs were calculated in the range of 0.5–30 Hz with 0.5-Hz 
resolution (61 values), using Fast Fourier Transform with a 2-sec 
Hanning window shifted by 50 samples (0.39-sec) for each channel 
of one-minute EEG. The types of individual EEG short-term SPs 
were determined with the help of a probability-classification analy-
sis [5, 82]. 
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Thus, particular frequency bands (indexed by spectral 
components) reflect different temporal scales of brain opera-
tion. When firing is periodic and synchronized in or between 
neurons belonging to a neuronal assembly there is one state 
that can be characterised by the frequency of the periodic 
rhythm or oscillation. This will differ from another state in 
which different neurons in the same area become synchro-
nized, or the same neurons with a different frequency, for 
example [86]. Freeman named such synchronization of a 
shared carrier wave of the outputs of a large number of neu-
rons over an area a ‘wave packet’ [78, 87]. Areas separated 
by distances exceeding the diameters of wave packets have 
differing wave forms and therefore different SP types. 

It is obvious that state and behavior of each cortex area 
may be affected (influenced/modulated) by a mixture from 
multiple primary sources. However, considering that each 
cortex area is an active system and in each time instant it has 
its own state, all activities (influences) from multiple pri-
mary sources are not just mixed, summed or averaged in a 
given cortex area, but are integrated within the current state 
(activity) of this area. 

In this sense local SP represents a functional source, 
which is defined as the part or parts of the brain that contrib-
ute to the activity recorded at a single sensor. A functional 
source is an operational concept that does not have to coin-
cide with a well defined anatomical part of the brain, and is 
neutral with respect to the problems of source localization 
and volume conduction [88, 89]. In this terminology, a func-
tional source is the lowest level of spatial resolution of a 
particular type of measurement. 

One may argue that at times when the EEG is dominated 
by a certain oscillatory pattern the estimated short-term SP 
might have physiological meaning. Indeed, neurophysical 
modeling of EEG power spectra [17, 80, 90] demonstrated 
that frequency spectra can be computed from basic physio-
logical quantities and that EEG spectra provide physiologi-
cally meaningful information on the neuronal substrates un-
derlying the EEG. Experimental studies support this analyti-
cal work by showing that artificially-induced modification of 
the underling neurodynamic properties is associated with 
changes in spectral components [55, 91]. 

Taken together the observed studies suggest that (a) local 
EEG short-term SP of particular type reflects the actual state 
of the neurons in underlying network and is sensitive to 
morpho-functional organization of the cortex and (b) the 
degree of volume conduction influence on SP is insignificant.  

Relationship Between Morphology of EEG Short-Term 
SP and the States of the Underlying Neurodynamical Sys-
tem (i.e. Neuronal Assembly) 

Analysis of the shape of different EEG short-term SPs 
revealed that the whole SPs diversity during resting condi-
tions (closed and open eyes) can be subdivided in 6 catego-
ries based on morphology of SPs [92]: (1) SPs with only one 
power peak, which occupies any one frequency bin, (2) SPs 
with only one power peak, which occupies any two adjacent 
frequency bins, (3) SPs with only one power peak, which 
occupies any three adjacent frequency bins, (4) SPs with all 
possible combinations of two power peaks, (5) SPs with all 
possible combinations of three and more power peaks and 

(6) unique SPs which are not among other categories and 
each of them has occurred in the EEG very rarely. As ex-
plored in our early work [5], the category of unique SPs is 
comprised of SPs which reflect transitory or disorganised 
episodes in the EEG.  

Moreover, there is a stable number of SPs which contrib-
utes constantly to each category of SPs independently on 
condition (closed vs open eyes) [92].  

Considering extensive data on how SP morphology de-
pends on neurophysiological parameters and nonlinear 
measures [17, 93-100], the data on SP morphology can be 
interpreted functionally in terms of states of the underlying 
neurodynamical system i.e. neuronal assembly. 

Thus, in the language of systems theory, significant sharp 
peaks in the spectral power characterise resonant behaviour 
of the system studied. One might refer to the resonant fre-
quency channels as the ‘natural frequencies’ of the system. 
Indeed, neurophysical modeling of EEG power spectrum and 
the use of the entropy of the power spectrum demonstrated 
that the sharpness or broadness of the peak in the EEG spec-
trum reflects the degree of (dis)order in the neurodynamical 
system [93, 95, 96]. Here spectral entropy measures the flat-
ness of the frequency distribution. The spectral entropy is 
highest for a broad, flat spectrum and lowest for an uneven 
narrow, peaked distribution [101]. An experimental study 
[92] revealed that the vast majority of EEG short-term SPs 
have one sharp power peak suggesting that the underlying 
neurodynamical system (neuronal assembly) is characterised 
by resonant ordered behaviour with low entropy in short-
term temporal scale. Increasing sharpness of spectral peak in 
this sense reflects decreasing complexity or increasing order 
of the underling dynamical system [95]. This may be due to 
an enhanced neuronal synchronisation with an increase of 
coupling strength (i.e., the degree of cooperation) between 
various neuronal elements within cortical network generating 
the EEG signal, i.e. in-phase coherent oscillators causing a 
lower complexity of the CNS. At the same time, the ampli-
tude of the peak depends on the excitation received by the 
population [99].  

The number of peaks in the EEG spectrum is also an im-
portant functional characteristic. Thus, the number of peaks 
in the EEG spectrum reflects the complexity (number of neu-
ronal assemblies) of the neurodynamical system [97, 99]. 
Indeed, an increased complexity may be caused by a domi-
nance of the number of weakly coupled or independent oscil-
lators attributed to various neuronal networks with inde-
pendent frequencies [95, 102]. Thus, the number of different 
peaks in EEG spectrum depends on the complexity of the 
signal which reflects the number of active neuronal popula-
tions [18, 99]. In the experimental study [92] it was demon-
strated that up to 36% of all short-term EEG SPs during rest-
ing conditions (closed and open eyes) have two or more 
sharp power peaks, thus reflecting the activity of two or 
more neuronal assemblies with resonant ordered behaviour 
within each individual assembly [93, 95, 97]. 

The functionality of the position of an individual spectral 
peak has been demonstrated in a number of studies. Thus, 
the position of an individual spectral peak in a frequency 
band is determined by the kinetics of the ensuing population 
dynamics [97, 103] or finely depends on the average gain of 
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the excitatory and inhibitory synapses within a region, with-
out modification in the synaptic kinetics: by increasing the 
average gain of fast inhibitory synapses, the peak moves to 
the right [99]. Additionally, it was shown that stronger in-
trathalamic interactions and weaker intracortical excitation 
are associated with higher alpha peak frequencies [17]. 
Smaller values of ‘synaptodendritic rate’ enhance the low-
pass filter properties of the synapses and dendrites, and cor-
respond to less high-frequency (  30 Hz) activity in the 
EEG, whereas larger values of ‘cortical damping rate’ are 
associated with sharper, larger-amplitude and slightly 
higher-frequency peaks in the EEG spectrum [104]. Since 
‘cortical damping rate’ is the ratio of the average axonal 
propagation speed and the typical range of cortical pyramidal 
axons, increased ‘cortical damping rate’ is associated with 
faster transmission or shorter effective ranges [17]. The loca-
tion of the alpha peak in model spectra depends on the in-
verse of ‘the axonal delay’ – corticothalamic loop delay. 
More negative ‘interactions between the thalamic relay and 
reticular nuclei’ corresponds to power peak in beta frequency 
band. Sensitivity analysis [17] suggested that stronger inter-
actions between the thalamic relay and reticular nuclei con-
tribute to shifting of the power peak from low-frequency 
band to beta and gamma frequency bands. Reductions in 
‘gains for excitatory cortical interactions’ tend to decrease 
power peak in delta frequency band and increase peak in 
beta and gamma power, while reductions in ‘gains for inhibi-
tory cortical interactions’ decrease power peak in theta fre-
quency band [17]. The empirical studies [92, 105, 106] dem-
onstrated that the position of the individual spectral peak 
depends on the functional state of the brain. Thus, the posi-
tion of the individual spectral peak is located around 10 Hz 
during closed eyes and around 1.5 Hz during open eyes. 

Additionally, the position of the individual spectral peak 
may reflect the size of the underlying neuronal assembly. 
Indeed, higher frequency oscillations are confined to small 
neuronal assemblies, whereas very large networks are re-
cruited during slow oscillations [107-110]. It is because most 
neuronal connections are local [111] and the period of oscil-
lation is constrained by the size of the neuronal pool engaged 
in a given cycle [112]. 

Finally, several modeling studies demonstrated that EEG 
SP indeed depends on neurophysiological parameters thus 
reflecting low-level physiological processes [15-18, 100]. 
For example, increasing the excitatory synaptic time constant 
causes a slowing of the dynamics, with an excess of power at 
lower frequencies. Whereas increasing the excitatory synap-
tic maximum depolarization causes a marked increase and 
sharpening of the spectral mass of the lower-frequency 
mode. There is a noticeable change in the SP as the gain is 
increased, with an increase in the characteristic frequency 
and a broadening of the power spectrum.  

Taken together the observed studies suggest that mor-
phology of EEG short-term SPs reflects (a) the number of 
the underlying neuronal assemblies, (b) the degree of 
(dis)order in the neuronal assembly, (c) the natural fre-
quency, size and the state of neuronal assembly. 

Physiological Mechanisms of Different SP Components  

EEG spectral pattern is characterized by several spectral 
components which are spectral powers within internationally 

agreed frequency bands: delta (0.1–3.5 Hz), theta (4–7.5 Hz), 
alpha (8–13 Hz), beta (14–30 Hz) and gamma (>30 Hz) 
bands [113, 114].  

These spectral components represent EEG oscillations 
and are hypothesized to reflect cyclical variation in the excit-
ability of neuronal assemblies [11, 12, 29, 50, 62, 63, 108, 
114]. Different SP components may relate to distinct physio-
logical mechanisms [115, 116] Fig. (6).  

 
 

Fig. (6). Simplified schematic block diagram of interactions among 
brain structures which constitute a homeostatic system that gener-
ates and regulates EEG oscillations indexed by different spectral 
components (healthy human). Notice that for most of the frequency 
bands there are still debates about their exact generators. 

 
Indeed, individual frequency bands are distinct and their 

experimentally observed frequency ranges show little over-
lap [117]. Analysis of the wide range of neurophysiological 
frequencies revealed a logarithmic progression of frequency 
bands [117] which may offer several advantages for the 
physiological operation of the brain. If the center frequencies 
of the various oscillators had integer steps, the various bands 
would be vulnerable to unwanted interference due to har-
monic and sub-harmonic frequencies [117]. Empirical data 
support this view: neighboring bands within the same brain 
structure do not occur together. For example, hippocampal 
theta oscillation does not co-occur with either sleep spindles 
or delta waves. Similarly, ripples and gamma oscillations are 
mutually exclusive. Such antagonism between neighboring 
bands may eliminate the possibility of unwanted interference 
in the overlapping frequencies [117]. In contrast, distant 
theta and gamma oscillations [118-120] and delta and beta 
oscillations [10, 121] are effectively coupled; as well sleep 
spindles are strongly “modulated” by the cortical slow 
rhythm [122].  

The described logarithmic progression of frequency 
bands and their functional independence within the same 
brain structure suggest distinct neurophysiological mecha-
nisms for the generation of EEG oscillations. Several models 
of neuronal populations describing the basic mechanisms for 
the generation of these rhythms were presented by Winfree 
[123], Lopes da Silva et al. [124, 125], Basar [13] and Free-
man [14]. These models and several lines of evidence sug-
gest that EEG oscillations in several frequency bands in-
dexed by spectral components are regulated by the interac-
tion between brainstem, limbic system, thalamus and cortex 
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(for the review see [126]). The following processes are be-
lieved to contribute to the generation of these distinctive 
EEG oscillations indexed by different spectral components 
in a healthy human. However, one should remember that for 
most of the frequency bands there are still debates about 
their exact generators. 

Delta activity: Extreme depression of thalamic gates re-
leases some cortical cells from the influences of sensory spe-
cific input that, together with diminished activation of the 
cortex by the ascending reticular activating system (ARAS), 
results in the production of a very slow rhythm called delta 
activity [126] (indexed by delta spectral component). There-
fore, two source of generation of delta activity can be out-
lined: (a) cortical which includes anterior medial frontal cor-
tex [127] and distributed cortico-cortical interactions [128-
130] and (b) subcortical which includes the common brain-
stem system [131], the nucleus accumbens [132], the ventral 
pallidum [133], and dopaminergic neurons in the ventral 
tegmental area [134].  

Thus, delta activity is modulated by the activity of the 
brain reward systems such as the brain opiate system and the 
dopaminergic mesolimbic pathways.  

Theta activity: GABA-mediated influences of nucleus re-
ticularis, a thin shell of cells surrounding much of the thala-
mus, can hyperpolarize cell membranes of thalamic pace-
maker neurons, slowing their rhythms toward theta range 
[126, 135, 136] (indexed by theta spectral component). In 
parallel with these processes, a mesolimbic system receives 
multimodal inputs, from the ARAS in the brainstem and col-
laterals of afferent sensory pathways as well as via the in-
ferotemporal cortex, and distributes this mesolimbic theta 
activity to a system comprised of the entorhinal cortex, hip-
pocampus, amygdala, septum and anterior cingulate cortex 
[126]. 

Alpha activity [126]: Pacemaker neurons distributed 
throughout thalamic regions oscillate in the frequency range 
of the alpha rhythm (with a mean frequency of approxi-
mately 10 Hz), regulating and synchronizing the excitability 
of the cells in the thalamo-cortical pathways. This modula-
tion is further distributed throughout the cortex by cortico–
cortical interactions. Small spatially distributed cortical areas 
seem to act as epicenters from which alpha activity spreads 
through cortical neuronal networks by interneuronal connec-
tions, generating the alpha rhythm (indexed by alpha spectral 
component) that dominates the resting EEG power spectrum 
seen in recordings from many scalp regions. 

Thus, alpha rhythms are mainly modulated by thalamo-
cortical and cortico-cortical interactions [115, 137, 138], 
where slow alpha oscillations represent the activity in the 
thalamo-cortical network and fast alpha oscillations reflect 
the activity in the cortical networks [30, 139]. 

Beta activity [126]: The ARAS receives inputs via collat-
erals of afferent activity from the sensory pathways. Activa-
tion of this system by incoming stimuli causes the brainstem 
reticular formation to inhibit the nucleus reticularis, oppos-
ing the GABAergic inhibitory action of nucleus reticularis 
by acetylcholine and releases its inhibitory actions on the 
thalamus. The frequency of the thalamic oscillators is in-
creased. Cortical activity is desynchronized in some regions 

and cortico-cortical interactions generate the beta rhythm 
(indexed by beta spectral component). 

Gamma Activity [126]: When both somatic and apical 
synapses or ventrobasal plus centralis lateralis are stimulated 
concurrently, that is when exogenous and endogenous inputs 
are co-incident, cortico-thalamic discharges are markedly 
enhanced, and activity at the gamma frequency back-
propagated to the cortical regions where co-incidence had 
occurred. This feedback from the cortico-thalamic volley 
binds the distributed fragments and causes coherent cortico-
thalamo-cortical loops to reverberate at the frequency of the 
gamma rhythm (indexed by gamma spectral component). 

Investigations on various neuronal classes demonstrated 
that firing pattern of one neuronal type may be transformed, 
under certain physiological conditions, into another type 
[108]. Indeed, the same neuronal network can switch from 
one type of oscillation to another. Cellular mechanism for 
this process has been suggested [136]. By changing the rest-
ing level of thalamic neurons, the same thalamocortical cir-
cuits would be capable of generating low-frequency oscilla-
tions, as well as fast oscillations. The model also predicts 
that the kinetics of GABA inhibitory postsynaptic potentials 
as well as the intrinsic properties of reticular cells are critical 
in determining the frequency of oscillations [140]. Thus, 
intrinsic neuronal mechanisms would dominate for generat-
ing the slow waves (0.5-4 Hz), whereas synaptic interactions 
with cortical and the thalamic reticular nucleus would be 
required for faster oscillations in the frequency range of 7-14 
Hz [141]. 

Notice, that research has shown that neural populations in 
the cerebral cortex, hippocampus or cerebellar cortex are all 
tuned to the very same frequency ranges (for the review see 
[142]). These findings support the suggestion that all brain 
networks communicate by means of the same set of fre-
quency codes of EEG oscillations.  

Taken together these observations suggest that various 
EEG oscillations indexed by different spectral components 
are generated by distinct neurophysiological mechanisms. 

Functional Significance of Different SP Components  

EEG oscillations indexed by spectral components are 
phylogenetically preserved, suggesting that they are func-
tionally relevant [112]. What can their functions be? 

Neurophysiologically different EEG frequencies appear 
to be related to the timing of different neuronal assemblies, 
which are associated with different types of sensory and 
cognitive processes [143]. Thus, different spectral compo-
nents reflect functionally different components of informa-
tion processing acting on various temporal scales. 

It was demonstrated that lower frequency oscillations al-
low for an integration of neuronal effects with longer delays 
and larger variability in delays and larger areas of involve-
ment [117]. Neural representations based on these oscilla-
tions could therefore be complex. In contrast, high frequency 
oscillation bands allow for a more precise and spatially lim-
ited representation of information by incorporating synaptic 
events from closely located regions with short synaptic de-
lays and limited variability [117]. 
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Neighboring frequency bands within the same neuronal 
network are typically associated with different brain states 
and compete with each other [30, 31, 110, 144, 145]. On the 
other hand, several rhythms can temporally coexist in the 
same or different structures and interact with each other 
[108, 110]. 

As there is extensive data on the frequency-dependent 
functional significance of oscillatory brain activity [30-32, 
76, 130, 139, 146-152; to mention just a few], spectral com-
ponents should reveal which types of brain functions are 
involved in a given state, condition or task Fig. (7). 

 

 
 

Fig. (7). EEG oscillations indexed by different spectral components 
and associated sensory and cognitive processes in a healthy human. 

 
It is assumed that EEG oscillations are of fundamental 

importance for mediating and distributing “higher-level” 
processes in the human brain [31, 32, 152]. Generally, the 
lower frequencies (3-9 Hz) are associated with general acti-
vation, intermediate activity (9-11 Hz) is associated with 
cognitive integration and higher frequencies (11-15 Hz) re-
late to sensory-motor processing [153]. The following func-
tions are believed to be associated with distinctive EEG os-
cillations indexed by different spectral components in a 
healthy human. 

Delta activity (indexed by delta spectral components): 
Delta activity is expected to be sensitive to internal stimuli 
signalling danger for survival (such as hypoxia, hypoglyce-
mia, fatigue, sustained pain), as well as to the stimuli signal-
ling a need for sexual activity (e.g. the level of sex hor-
mones). Indeed, in healthy humans, hypoglycemia is associ-
ated with increase delta power [154]. Also, increase of delta 
oscillations has been observed during sexual arousal and 
orgasm [155, 156]. In healthy subjects, absolute delta power 
has been found to decrease after food consumption in the 
morning after fasting from the previous night [157]. Thus, 
delta oscillations are associated with behaviour oriented to 
the acquisition of biologically important goals such as physi-
cal maintenance, survival, dominance and mating [158, 159]. 

Besides physiological functions delta activity participates 
in mediation of cognitive functions. It was demonstrated that 
delta activity is related to information detection [26, 129, 
150, 160]. Thus, increases in delta activity occur only in 
those tasks requiring attention to internal processing, 
whereas attention to external stimuli decreases delta activity 
[161]. 

Theta activity (indexed by theta spectral components): 
Theta system is expected to be associated with emotional 
regulation and memory. Indeed, during emotional arousal, 
neurons in the amygdala produce theta activity [162, 163]. 
Frontal theta is more marked in subjects who are less neu-
rotic and less anxious [164-167]. The hippocampal theta in 
humans is involved in discrimination of emotional stimuli 
[168-171]. Vinogradova [172] suggested that theta activity 
may serve as a gating function on the information processing 
flow in limbic regions. 

Additionally, theta rhythms are associated with a com-
plex set of cognitive processes which are important for 
memory: conscious alertness, arousal or readiness [130], 
episodic encoding and retrieval, recognition memory [148, 
151, 173-177], selective attention and episodic memory [31, 
129, 178, 179] as well as readout from long-term memory 
[180-182].  

Indeed, based on experimental findings Klimesch [30, 
31, 183] demonstrated that episodic memory demands lead 
to synchronization in the theta band. Klimesch has suggested 
that theta synchronisation reflects the introduction of cortical 
activation via cortico-hippocampal feedback loops, and has 
demonstrated that task-related increases in theta power are 
related to the successful encoding of new information in epi-
sodic memory [31, 173]. Increases in theta are typically as-
sociated with increases in mental workload as defined by 
task difficulty and stimulus complexity [184], whereas de-
creased theta is found to be associated with incorrect re-
sponses on a signal detection task [185] or when tasks be-
come more familiar or easier [186]. 

Moreover, theta oscillations are involved in the encoding 
of information particularly during active exploratory move-
ments and spatial navigation [187, 188]. 

Frontal midline theta has been reported to increase with 
increased memory load and workload in general [186, 189-
191], mental concentration [165, 166, 192-194], focused 
attention [129, 184, 195] and serves a response controlling 
function [151]. 

Several lines of evidence indicate that decreased percent-
age of EEG segments with theta activity may indicate im-
paired information processing and decreased working mem-
ory load [192, 196] and altered encoding with reduced re-
trieval [197, 198]. Whereas increase in the percentage of 
EEG segments with fast theta indicates a relaxed but alert 
state with focused attention [129, 184; see also 199] and im-
agery enhancement [200]. 

Alpha activity (indexed by alpha spectral components): It 
is well known that alpha is more than just a spontaneous 
rhythm (for functional correlates see, [150]) and may be a 
prototype of the ‘building blocks’ [201] which accompany 
psycho-physiological events. 

Alpha system in humans should participate in instantane-
ous recognition of environmental patterns by means of 
matching them with categorized knowledge stored in seman-
tic memory [202]. To accomplish this function, the alpha 
system has to participate in both perception and memory 
operations and should be closely associated with mecha-
nisms of attention. Indeed, uniform cognitive operations (e.g. 
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perception, memory coding, memory readout) may enhance 
synchronization of alpha oscillators whereas complex cogni-
tive operations, which require matching of different cogni-
tive processes (such as recognition of environmental pat-
terns), are associated with alpha desynchronisation [202]. It 
was demonstrated that alpha relates to primary sensory proc-
essing [203], motor behaviour [204], memory processes [30, 
31, 173-175] and anticipation [13, 130]. 

Alpha activity decreases with increases in memory load 
[191], during selective attention [12, 114], cognitive and 
memory performance [31]. However, when attention is di-
rected internally towards mental imagery, alpha power at 
attention-relevant scalp sites is greater than during exter-
nally-directed, information-intake tasks, reflecting suppres-
sion of external input during the imagery task [205]. Also in 
this study, when external task load increased, alpha power 
increased, reflecting the need to suppress competing infor-
mation sources. 

Additionally, it has been repeatedly observed that the en-
coding of auditory stimuli mainly elicits an increase in alpha 
amplitude [206], whereas memory retrieval elicits a decrease 
in the amplitude [207, 208]. 

Several studies demonstrated that narrow alpha bands 
have distinct functions. Indeed, topographically widespread 
lower alpha desynchronization (in the range of about 7-10 
Hz) could be obtained in response to almost any type of task. 
It has been suggested that this desynchronization reflects 
general task demands and attentional processes [30, 31, 115, 
183, 209-213]. Involvement of the lower alpha bands in the 
attentional processes is confirmed in recent EEG studies 
[214-220]. Additionally, increased efforts to maintain a state 
of alertness are related to an increase in tonic lower alpha 
[31]. 

Experimental findings suggest that long-term (semantic) 
memory demands associated with a task-specific desynchro-
nization in the upper alpha band (in the range of about 10-13 
Hz)) [30, 31, 183].  

The shift towards higher frequencies of alpha activity 
may also suggest an increase in alertness [221-223] and can 
be interpreted as reflecting increased excitation of neuronal 
assemblies. Hence, increase in frequency of alpha rhythm 
during different tasks may relate to shift in the brain func-
tional state towards a more aroused state. On one hand it is 
likely that higher central tonus correlates with higher recep-
tiveness (readiness to respond to relevant stimuli) and with 
increased attention on the other [224, 225]. Thus, upper al-
pha may reflect task-specific cortical activation [210]. There-
fore, fast-alpha-rhythmic segments of EEG may reflect a 
state of cognitive [209] and cortical neuronal network [139, 
210] activation. 

To summarise, alpha activity is associated with conscious 
sensory perception, recognition and semantic memory in-
cluding such “serving” cognitive processes as general task 
demands and attention. 

Beta activity (indexed by beta spectral components): 
Several lines of evidence indicate that increase in the per-
centage of beta-rhythmical EEG segments suggest an in-
crease in alertness [221-223] as well as attention [226] and 
can be interpreted as reflecting a state of cognitive or emo-

tional [209] and neuronal [227] activation. Indeed, increased 
neuronal activity changes the ionic environment of neurons 
[228] that can lead to increased burst firing of neurons [229] 
and as a consequence causes the observed shift towards 
higher frequencies. This interpretation is consistent with the 
idea that the neuronal assemblies synchronized within beta-
frequency band represent a general state of arousal [227] and 
imply high rates of energy utilization [87]. 

Additionally, it was demonstrated that beta activity re-
flects emotional and cognitive processes [209] necessary for 
sensory-motor processing. It is known that beta rhythm syn-
chronizes after finger, arm, foot [147], mouth [230] and face 
[146] movement, as well as after imagined movement [231]. 
Oscillations of ~20 Hz are usually considered harmonic with 
the mu rhythm, acting in the same way as ~10 Hz frequency 
for the mu rhythm, and being strictly localized [232]. 
Fingelkurts et al. [233] reported that the 20.5 Hz spectral 
component most likely represents a beta rhythm which is 
separate from the mu rhythm and that this beta rhythm is 
particularly important for the maintenance of a conscious 
audio-visual percept. 

The increase of beta brain oscillations may also point to 
focused attention, as beta rhythm has been shown to increase 
with attention [226]. 

Gamma activity (indexed by gamma spectral compo-
nents): Gamma responses were shown to be involved in vis-
ual perception and cognitive integrative function [150, 234-
237]. Gamma is crucial for ‘binding’ dispersed coherent as-
semblies [238-241]. 

Altogether, the observed studies suggest that different 
EEG oscillations indexed by different spectral components 
have distinct set of functional operations. At the same time, 
each oscillation is related to multiple functions and a given 
function is often manifested by means of multiple oscilla-
tions. 

Taken together the last two sections suggest that different 
EEG oscillations (indexed by different spectral components): 
delta, theta, alpha, beta and gamma oscillatory systems act as 
resonant communication networks through large populations 
of neurons (for a review, see [150]). These resonant commu-
nication networks (distributed oscillatory systems) may pro-
vide a general communication framework parallel to the 
morphology of distributed sensory networks [150]. Indeed, 
almost all brain areas are tuned to be activated or resonate 
with the EEG frequencies [26, 130, 242, 243]. 

In this context particular EEG frequencies occurring at 
particular time intervals can be considered as EEG “letters” 
of the EEG code, whereas combinations of different fre-
quencies build up EEG “words” [244]. The distribution of 
such an EEG code in different brain areas is regarded as 
EEG “syntax” of the “brain language”, whereas the whole-
brain-work that follows the super-synergy is the “sentences 
and the discourse in the language of the brain” [142]. 

Thus, one type of SP (EEG word X) differs from other SP 
type (EEG word Y) by virtue of preferential association with 
a distinct subset of the totality of neural processes. Here, one 
type of SP (EEG word) is an expression of the superposition 
principle according to which integrative brain functions are 
obtained through the combined action of multiple EEG oscil-
lations (EEG letters) [142]. 
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Developmental Changes of SP Components  

Numerous studies demonstrated that spectral components 
exhibit developmental changes which reflect maturational 
changes in the EEG [245-259]. Each spectral component 
develops in a certain temporal order during childhood, youth 
and adolescence. 

Indeed, several studies have shown that the delta [253; 
ages: 2–6 weeks, 7–14 weeks, and 4–12 months], theta [254; 
ages: 8–11 month olds], and alpha [255; ages: 32–41 weeks 
old] bands undergo systematic development in infancy. 

EEG spectral components continue to change during 
childhood. Matousek and Petersen [247, 248], Dustman et al. 
[256] and Clarke et al. [257] demonstrated that delta and 
theta activity were dominant until the age of 4 years, with 
both decreasing with age, whereas alpha and beta activity 
increased throughout childhood. Relative alpha amplitude 
increased until about age 24. Relative beta amplitude was 
smallest in 4–8 year olds and then steadily increased. The 
theta/alpha and theta/beta ratios decreased with increasing 
age. Gasser et al. [251, 252] found that relative delta, theta 
and alpha-1 activity decreased with age and higher frequen-
cies increased. A strong complementary replacement of theta 
by alpha-2 activity was found up to the age of 14. 

Developmental studies [258] have reported changes in 
rhythmic activity in the posterior regions, showing transi-
tions from no measurable posterior basic rhythm in new-
borns to 4–6 Hz in the first year after birth and progressively 
increasing to the adult mean of 10 Hz by ages 10–16. Recent 
findings are consistent with earlier reports suggesting that 
the maturation of the alpha rhythm is not complete until the 
age of 16 [259]. 

Those spectral components which exhibit parallel matu-
ration are separated from each other by their topographic 
peculiarities in EEG maturation. Indeed, Benninger et al. 
[256] found that theta activity decreased as alpha increased, 
and that the speed of change in occipital areas was almost 
twice that of central areas. Gasser et al. [252] demonstrated 
that delta, theta and alpha waves developed earliest occipi-
tally, followed by parietal, central and then frontal regions, 
whereas beta waves developed earliest in central regions, 
followed by posterior and then frontal regions. 

These developmental changes in spectral components re-
flect a number of structural changes that take place across 
childhood, adolescence and into young adulthood [260, 261]. 

Indeed, absolute EEG power declines with age over ado-
lescence and coincides with grey matter volume reduction 
resulting from synaptic pruning over adolescence [261]. 
Boord et al. [260] showed that reductions in estimated cere-
bral metabolic rate co-varied linearly with declines in slow-
wave power over the age-span and that these relations are 
strongest for the subjects under 20 years of age. 

MRI studies have shown that anterior and superior re-
gions of the frontal cortex are some of the last regions to 
mature, between 12 and 30 years of age [262, 263].  

In summary, maturational studies of spontaneous EEG 
activity in healthy children and adolescents have consistently 
reported that measures of total power, absolute power, and 
the distribution of relative band power vary considerably 
with age. 

Heritability of the Individual SP and its Components  

A lot of studies have demonstrated that, to a large extent, 
most of the EEG power spectrum across the scalp is deter-
mined genetically [264-270] (for a review and meta-analysis, 
see [271]). Thus, the heritability of brain oscillations ob-
tained under resting conditions is estimated to be between 
80% and 90% [267]. 

Eischen et al. [272] demonstrated that the correlations for 
spectral power between family groups were greater than 
those obtained from the non-families for theta, alpha, and 
beta band power. The correlations for mean frequency be-
tween family members were also greater than those of the 
non-families for the delta, theta, and alpha bands, although 
these were not as robust as the spectral power findings. 

Genetic correlations between spectral components indi-
cated that half to three-quarters of the genetic variance can 
be attributed to a common source and this common source is 
not a common environment in EEG power [270]. It was sug-
gested that the separation of broad bands on the basis of 
EEG power has little basis in its genetic architecture. In con-
trast, EEG powers at different frequencies share a common 
genetic source [270; see also 273]. 

A common genetic source for EEG power may reside in 
common influences on cerebral rhythm generators like the 
central ‘‘pacemaker’’ in the septum for hippocampal slow-
wave activity (3–4 Hz) or the thalamo-cortical and cortico-
cortical generators of cortical alpha activity [12, 114]. An-
other possible source could lie in genes directly involved in 
the bioelectric basis of the EEG signal itself [270]. Indeed, 
genes influencing the number of pyramidal cells, the number 
of dendritic connections and their orientation with respect to 
the scalp may directly influence the mass dendritic tree depo-
larization of pyramidal cells in the cortex that underlies EEG 
power [274]. Genes common to all frequencies may also 
affect EEG power through effects on the conductive proper-
ties of the tissues surrounding the cortex. However, consider-
ing the discussion on volume conduction presented above 
effects on the conductive properties cannot be the main 
source for EEG power. 

Taken together the observed studies establish EEG power 
spectrum to be one of the most heritable complex traits in 
human subjects. The results show that in adult subjects EEG 
power at rest is a heritable trait across the entire frequency 
spectrum. No evidence was found for common environ-
mental influences on the EEG power spectrum. 

Intra-individual Stability of the Sets of EEG Short-Term 
SPs and their Percent Ratio  

As a first measure of EEG short-term SPs and their per-
cent ratio stability the coefficient of variability (CV = stan-
dard deviation / Mean) for averaged probability-
classification profiles (PCPs, which indexes sets of SPs and 
their percent ratio) across all 1-min EEGs separately for each 
subject, EEG channel and session was calculated [275]. CV 
~1 indicates nearly random process, whereas CV<<1 reflects 
very high stability. It was demonstrated that EEG short-term 
SPs and their percent ratio (indexed by PCP) were highly 
stable across all 1-min EEGs within the same subject and the 
same recording session (CV ranged from 0.0 to 0.6 for dif-
ferent EEG channels and subjects). This is consistent with 
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other studies which have reported the inherent stability and 
reliability of spectral power during resting conditions within 
the same recording session [276, 277]. Salinsky et al. re-
ported that repeated 20-s segments of EEG were about 82% 
reliable, EEG segments of 40 s were about 90% reliable and 
at 60 s they were approximately 92% reliable [278]. Such 
stability can be explained by the fact that diversity of SPs is 
restricted and depends on the functional brain state or cogni-
tive task [5, 92]. This finding suggests that the brain “main-
tains” a particular composition of EEG oscillations and their 
percent ratio (indexed by short-term SPs) during a given 
functional state. PCP can be viewed here as a representation 
of the composition of different types of neuronal integral 
dynamics and their percent ratio. Thus, PCPs reflect the 
probability of the occurrence of particular neuronal dynamics 
which altogether constitute a dynamic repertoire of brain 
activity in the particular functional state. 

In order to test individual temporal stability and reliabil-
ity of the sets of EEG short-term SPs and their percent ratio, 
the calculation of within-subjects reproducibility upon repeat 
testing (test-retest reliability) was used [275]. The sets of 
types of EEG short-term SPs and their percent ratio for the 
same individuals showed high similarity between the two 
test sessions and specificity for all examined conditions (Ta-
ble 1). Within-subject test-retest reliability was significantly 
higher for cognitive task compared to resting conditions and 
it was higher for anterior cortex areas than for parietal cortex 
areas [275]. Thus, intra-individual sets of EEG short-term 
SPs and their percent ratio cannot be random because “…by 
definition chance findings do not replicate” [279, p. XI]. 
These findings might be the manifestation of intra-individual 
stability of underlying neurodynamics and homeostatic and 
functional regulatory mechanisms.  

Table 1. Within-Subject Test-Retest Reliability (Indexed by 

the Coefficient of Determination – R
2
) of Sets of 

EEG Short-Term SPs and their Percent Ratio. Val-

ues Averaged Across 12 Subjects and Presented as 

Mean ± Standard Deviation 

Conditions R
2
 

Closed eyes 0.63 ± 0.05 

Open eyes 0.53 ± 0.03 

Waiting, OE 0.74 ± 0.04 

Encoding, OE 0.77 ± 0.04 

Keeping in mind, OE 0.77 ± 0.05 

Repeated assessments were done at 1-2 week intervals for each subject. Spearman rank 
correlations test was used.  

Individual EEG short-term SPs were calculated on 2-sec EEG epochs with 50 
points shift (0.39-sec). 
To average the correlation coefficients across the subjects, the correlation coefficients 
were converted into so-called Fisher Z values. It is necessary since an average of corre-
lation coefficients across the subjects does not represent an "average correlation" in all 
those subjects because the value of the correlation coefficient is not a linear function of 
the magnitude of the relation between the variables. Thus, before averaging, correlation 
coefficients were converted into Fisher Z values (which are additive measures), using 
the following formula: 
Z =  * log [(1 + r) / (1 – r)], where r is the correlation coefficient. 

In order to evaluate the correlation between variables, it is important to know the 
"magnitude" or "strength" as well as the significance of the correlation. To obtain the 
strength of the relationship the correlation coefficients were squared, resulting in the 
values (R2, the coefficient of determination) that represent the proportion of common 
variation in the two variables. Multiplied by 100, this proportion of variance indicates 
the percentage of variance that is explained by the regression function. 

‘Closed eyes (CE)’ and ‘open eyes (OE)’ = resting conditions; ‘waiting’, ‘encoding of 
the actual visual matrix object’, and ‘keeping in mind of the perceptual visual image’ = 
multi-stage memory task. 
 

Consistently, a number of studies showed that different 
EEG spectral components are highly stable over time during 
rest, cognitive tasks and psychopathology [277, 278, 280-
282]. Thus, Burgress and Gruzelier [283] reported average 
reliabilities of 0.81 and 0.86 for theta and alpha bands in 
resting, eyes open EEG with a test-retest interval of about 1 
h. Test-retest correlation coefficients for EEG power, after a 
12–16-weeks interval between measurements, are high ~0.8 
for both absolute and relative power [265, 278, 284]. For 
longer intervals (with an average of 10 months), the test-
retest reliability stays ~0.7 [277]. Even over a time period of 
5 years the EEG SPs demonstrated high stability [285]. 

Each of the spectral components demonstrates high tem-
poral stability scores. Thus, temporal stability (an average 
period of 1.77 years) scores are highest for theta (0.82-0.95, 
average 0.98) and alpha (0.84-0.96, average 0.91) spectral 
components. Stability of beta band power (0.52-0.93, aver-
age 0.82) suggests more change over time than alpha and 
theta, and delta shows lowest stability, varying from 0.60 to 
0.87 (average 0.69) [270].  

Taken together, these results demonstrate that not only 
different frequency bands are more or less temporally stable 
and reliable, but in fact, the whole composition of types of 
EEG short-term SPs and their percent ratio are highly stable 
and temporally reliable. Moreover, the degree of this tempo-
ral stability depends on functional state of the brain and cog-
nitive task. Thus, the obtained results suggest that the actual 
composition of types of EEG short-term SPs and their per-
cent ratio possess distinct trait-like qualities as indicated by 
(a) within-subject stability over EEG recordings; (b) high 
reliability over time and (c) high specificity for each of the 
examined conditions. 

Discrete Dynamics of EEG Short-Term SPs 

It was demonstrated that even during resting condition 
when the eyes are closed, the relative incidence of the SP 
type change during the transition between neighboring EEG 
epochs is more than 0.50 [5]. Considering that this data re-
fers to the level of variability of SPs in the neighboring ep-
ochs which overlapped by 80%, this value is very high. Such 
high incidence of the SP type change during the transition 
between neighboring EEG epochs most likely reflects dis-
crete dynamics of EEG short-term SPs. This is in line with 
the work of Adak [286] who demonstrated that the spectrum 
of piecewise stationary processes changes abruptly over 
time. This apparent abrupt “switching” from one dynamic to 
another is characterized as multivariability, with new pat-
terns being continually created, destroyed, and subsequently 
recreated [43]. This finding relates to the discrete (but not 
independent) work of the different morphological brain sys-
tems [287, 288] (for reviews see [289] and [9]). Addition-
ally, functional sensitivity of the incidence of the SP type 
change during the transition between neighboring EEG ep-
ochs has been demonstrated. Thus, the SP types changed 
more frequently during an increase in the functional loading 
such as eyes opening and then the memory task [5].  

Analysis of SP type change in the neighboring epochs at 
different time shifts between them revealed that the SPs of 
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the neighboring EEG epochs within the same EEG only have 
a significant deterministic influence on each other where the 
overlap in epochs is no longer than 50 points of sampling 
rate. At greater shifts between the epochs, the estimations of 
the SP type alternation decrease practically to a stochastic 
level [5].  

It is suggested that discrete dynamics of short-term EEG 
SP depicts EEG piecewise stationary structure where dynam-
ics of the brain EEG field is represented by the intervals of 
quasistability or “microstates” and by sudden transitions 
between them [290, 291]. Notice that the transition (sudden 
jump) between states per se is not a gap, rather it is a con-
tinuous process (in time) from one state to another; it is only 
the rapid speed of the transition relative to the time spent in 
each “state” that makes transition appear as a rapid shift [9, 
47]. 

Taken together the observed results demonstrate the dis-
crete dynamics of EEG short-term SP and suggest that the 
multi-variability of neuronal networks is discrete in time, 
and limited by the dynamics of the short quasi-stable brain 
states [47]. 

To summarise, converging evidences observed in the 
previous sections point to the following conclusion: EEG 
short-term SP of particular type may be considered as a sin-
gle event in EEG phenomenology from the viewpoint of its 
preferential association with the actual state of the neurody-
namical system i.e. neuronal assembly and with a distinct 
subset of the totality of brain functions including sensory and 
cognitive processes.  

Therefore, the parameters of the composition of types of 
EEG short-term SPs, their percent ratio and the peculiarities 
of its alternation in the analyzed EEG may provide more 
adequate characteristics of the brain operational activity than 
conventional spectral analysis. Whether the parameters of 
the composition of types of EEG short-term SPs and their 
percent ratio are meaningful ultimately depends on their as-
sociation with the behavioral trait, cognitive activity, psy-
chopharmacological influence or neuropsychopathology. 
This will be considered in the following section. 

Functional Relevance (Consistency) of EEG Short-Term 
SPs in Accordance with the Changes of Functional Brain 

State, Cognitive Tasks and with Different Neuropsycho-

Pathologies 

This section describes the main experimental and empiri-
cal findings on the EEG temporal and spatial microstructure 
in terms of EEG short-term SPs covering the last 10 years of 
research of our research group. 

How Many Types of EEG SPs Exist? 

Studies demonstrated that EEG can be described by a 
limited set of short-term SPs types (9-25 for different condi-
tions) for the number of functional states, cognitive tasks, 
pharmacological influences or neuropsychopathologies [5, 6, 
54, 55, 82, 92, 233, 292-295]. This means that the EEG sig-
nal consists of a restricted number of typical quasi-stationary 
segments [56, 296, 297] Fig. (8). This suggests that there are 
distinct classes of brain (cognitive and mental) operations 
[298] and that they can be distinguished by SP types.  

It can be seen that the sequence of SPs is far from being 
homogenous Fig. (8). Even without any type of external 
stimulation the brain passes through variations of SP types. 
In such a way, the dynamics of brain activity can be consid-
ered as a sequence of relatively stable and fixed EEG seg-
ments indexed by distinct SP types. 

 
 

Fig. (8). A sequence of EEG segments of different type each char-
acterized by distinct type of short-term SP for one-minute O1 EEG 
channel (resting condition, closed eyes). 

This channel is characterized by 7 types of different EEG SPs. Each 
type of SP is indicated by different color/pattern (the same spectral 
pattern types have the same color or pattern). Numbers indicate 149 
spectral patterns calculated on 2-sec EEG epochs with 50 points 
shift (0.39-sec). The types of individual EEG short-term SPs were 
determined with the help of a probability-classification analysis [5, 
82]. It can be seen that different types of EEG segments have dif-
ferent duration and that they repeat themselves a different number 
of times.  

 
Notice, that there is a specific set of types of EEG SPs for 

each EEG channel or small group of channels [5]. 

Analysis demonstrated that the total number of SP types 
was dependent on the functional state of the brain, pharma-
cological influence and neuropsychopathology Fig. (9). It 
can be seen that in healthy subjects the total number of SP 
types decreased along with the increase in functional load-
ing4 with eyes opening5 and then the memory task (P<0.01-
P<0.001). At the same time, the number of SP types de-
creased or increased dependently on which neuromediatory 
or brain system was affected Fig. (9). Thus, facilitation of 
GABA neurotransmission in the brain by lorazepam resulted 
in reduction of the number of SP types (P<0.001), whereas 
activation of the opioid and dopamine receptors lead to an 
increase in the repertoire of SP types (P<0.0001) when com-
pared with the baseline (placebo). Additionally, the number 
of SP types was dependent on the type and the number of 
predominantly impaired brain systems by different neuro-
psychopathologies Fig. (9). Thus, the number of SP types 
decreased for interictal EEG without epileptiform abnormali-
ties (sensory brain system is assumed to be predominantly 
affected) (P<0.001) and increased for depression (affective 
brain system is predominantly affected) (P<0.001), opioid 
abuse (affective and executive brain systems are predomi-
nantly affected) (P<0.001) and withdrawal (affective, execu-
tive and memory brain systems are predominantly affected) 
(P<0.0001) when compared with baseline (norm). The more 
the number of brain systems affected the greater the number 
of SP types Fig. (9). 

Taking these findings together suggests that cortical areas 
are characterized by a limited repertoire of the particular 
probable oscillatory states indexed by distinct sets of differ-

                                                
4 Functional loading has been defined as the amount of processing capacity, physio-
logical activation and attention which are expended during task performance [299, 
300]. 
5 Opening one's eyes results in nonspecific activation compared to the eyes closed 
condition [301]. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149



144    The Open Neuroimaging Journal, 2010, Volume 4 Fingelkurts and Fingelkurts 

ent SP types. For example, results for interictal EEG (with-
out epileptiform abnormalities) may reflect increased rigidity 
in the brain activity [292] whereas results for opioid abuse 
and withdrawal may point to increased lability in the neuro-
dynamic. 

What is the Functional Importance of EEG SPs of a Dif-

ferent Type? 

 It was demonstrated that different types of SPs has a dif-
ferent importance for the brain – their occurrence is less or 
more probable for particular functional state of the brain. 

Usually, 3-5 SP types are the most probable when compared 
with the others for particular state, condition or task. The 
modeling test demonstrated that the occurrence of the most 
probable SP types is not random and may have a functional 
nature [6]. 

About 50% of all types of SPs occurred no more than 2% 
of time in the observed EEG signal [5]. These rarely occur-
ring EEG segments most likely characterize the individuality 
of different EEG channels and/or a subject’s EEG. The re-
maining 50% of types of SPs were the same for different 

 

 
Fig. (9). The number of SP types for different conditions. Data averaged across all EEGs per condition and presented as mean ± standard 
deviation and sorted from smaller values towards larger. Types of individual EEG short-term SPs were determined with the help of a prob-
ability-classification analysis [5, 82]. In order to reveal any statistically significant differences between certain conditions, the Wilcoxon test 
was applied. Statistical significance was assumed where P<0.05.  
 
‘CE’ = closed eyes; ‘OE’ = open eyes; ‘Epilepsy’ = medication-free interictal EEG without epileptiform abnormalities during generalized 
epilepsy in resting conditions; Dark bar represents functional reference baseline - spontaneous EEG during resting state with closed eyes 
which is distinct from both sleep and any type of task involving explicit perception, memory or other cognitive activity and provides a priori 
hypotheses about the way in which the brain will respond across a wide variety of task conditions and brain states. 

Functional brain states

Comparison of conditions Significance

Closed eyes  = Opened eyes n.s.
Closed eyes > Memory p  < 0.001
Closed eyes > Hypnosis p  < 0.001
Opened eyes  > Memory p  < 0.001
Opened eyes  > Hypnosis p  < 0.001
Memory  > Hypnosis p < 0.01

Conditions n  of EEGs

Closed eyes 96
Open eyes 96
Memory task 288
Hypnosis 22

Psychopharmacology

Comparison of conditions Significance

Lorazepam < Placebo p  < 0.001
Lorazepam < Opioids p  < 0.0001
Lorazepam < Methadone p  < 0.0001
Placebo < Opioids p  < 0.0001
Placebo < Methadone p  < 0.0001
Opioids < Methadone p < 0.001

Conditions n  of EEGs

Lorazepam 59
Placebo 59
Opioids 110
Methadone 30

Psychopathology Comparison of conditions Significance

Epilepsy < Healthy p  < 0.001
Epilepsy < Depression p  < 0.001
Epilepsy < Opioid abusers p  < 0.001
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Depression < Opioid abusers p  < 0.0001
Depression < Withdrawal p  < 0.0001
Opioid abusers < Withdrawal p < 0.001

Conditions n  of EEGs

Epilepsy 18
Healthy 96
Depression 206
Opioid abusers 110
Withdrawal 65
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EEG channels, in all subjects and various brain functional 
states thus being general. It may be assumed that these gen-
eral SP types reflect universal micro-temporal quasi-
stationary elements [2] which form the EEG “portrait” dur-
ing macro-temporal transformations of the functional state 
[7]. Indeed, it was shown experimentally that all significant 
transformations, detected in EEGs during changes in the 
brain’s activity, affected only the group of these general 
types of SPs [5] Fig. (10). Thus, these types of SP are func-
tionally active: their occurrence changed along with altera-
tions in the functional state of the brain or cognitive task. 

Taken together, these findings suggest that a particular 
composition and percent ratio of SP types were typical for 
each of the examined conditions. Perhaps composition and 
percent ratio of SP types reflect the poly-operational struc-
ture of brain activity (for discussion see [6]). Thus, changes 
in the brain functional state were accompanied by changes in 
the poly-operational structure of brain activity (indexed by 
SP types) which describes this functional state. 

Perhaps the oscillatory activity of neuronal pools, re-
flected in composition of brain oscillations, constitutes a 
mechanism by which the brain can regulate state changes in 
selected neuronal networks that lead to a qualitative transi-
tion between modes of information processing [29].  

How Often are the Types of SPs Changed During Transi-

tion from One EEG Epoch to Another? 

It was demonstrated that even during the rest conditions 
when the eyes are closed, the relative incidence of SP types 
change during the transition between neighboring EEG ep-
ochs of the same EEG was high: more than 0.50 [5] Fig. 
(11). This value constitutes 65% from the maximum possible 
rate and is significantly less (P<0.0001) than stochastic level 
(0.83 for ‘random EEG’ – EEG for which the natural dynam-
ics of the SP sequence within each EEG channel was com-
pletely destroyed, but the percentage ratio between different 
types of SPs remained the same).  

SP types changed more frequently during an increase in 
the functional loading such as eyes opening and then mem-
ory task (P<0.001-P<0.0001) [5] and less frequently in the 
interictal EEG without epileptiform activity (P<0.001) [292] 
when compared with baseline (closed eyes resting condi-
tion). 

The data presented above refers to the level of variability 
of SPs in the neighboring epochs which overlapped by 80%. 
It would be expected that where the epochs overlap to a 
lesser extent (until they converge completely in time) the 
variability in type of SPs should increase to a certain value 
which is characterized by a stochastic level of the SP type 
change incidence. 

In order to find the value of the relative rate of SP sto-
chastic alternation in the actual EEG, it was subjected to a 
randomized mixing of SPs. In such a way, the natural dy-
namics of SP sequence within each EEG channel were com-
pletely destroyed, but the percentage ratio between different 
types of SP remained the same. This modified EEG was de-
scribed as “random”. Using the procedure of randomly mix-
ing SPs, the relative rate of the SP type alternation from the 
first and to the last interepoch shifts was 0.825 Fig. (11). 
This value presents an estimation of the maximum possible 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (10). The pie diagrams during consecutive changes of the con-
ditions: closed eyes resting condition (n = 96) changes to open eyes 
condition (n = 96), which changes to “waiting” stage (n = 288) of 
the memory task, which is followed by “memorising” stage (n = 
288) of the memory task for one-minute O2 EEG channel. Data 
averaged across all EEGs per conditions (for 12 subjects).  
The different colors/patterns reflect the percentage of the different 
SP types. The numbers indicate the labels of types of SPs. The 
main frequency peaks for each SP type are: 2 - 10 Hz, 3 - 11.5 Hz, 
4 - 13 Hz, 7 - 9.5-10.5 Hz, 8 - 9.5-11.5 Hz, 9 - 8.5-11.5 Hz, 11 - 4-
8.5 Hz, 12 - 4-10.5 Hz, 13 - 5.5-10.5 Hz, 14 - 6.5-12.5 Hz, 15 - 2.5-
8.5 Hz, 16 - 2.5-10.5 Hz, 17 - 2.5-12.5 Hz, 18 - 4 Hz, 19 - 5.5 Hz, 
21 - 3-6.5 Hz, 22 - 2.5-4 Hz, 23 - 2.5-3.5-5.5-9.5 Hz, 24 - 2.5-5.5 
Hz, 25 - 2.5 Hz, 28 - 2.5-4.5-8.5 Hz, 29 - 2.5-4.5-10.5 Hz, 31 - 3-
6.5-11 Hz, 32 - 2-6.5-8.5-12.5 Hz. Types of individual EEG short-
term SPs were determined with the help of a probability-
classification analysis [5, 82]. “Waiting” stage of the memory task 
= waiting for the presentation of matrix visual stimulus – reflects 
alertness, arousal or readiness to process information [13, 130]; 
“Memorizing” stage of the memory task = memorizing of the pre-
sented matrix visual stimulus; doted line indicates those SP types 
percentage of which increases along with the increment of func-
tional loading; the solid line indicates those SP types percentage of 
which decreases along with the increment of functional loading. 
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rate of relative alteration in the type of SPs for a given EEG. 
Approaching this estimation testifies to the attenuation of 
mutual SPs determination between the neighboring EEG 
analysis epochs. 

The maximum rate of change in the SP type, equal to 
0.82, was reached at the shift in 300 points with closed eyes 
resting condition (Table 2). This rate remains constant when 
the time interval between the epochs is increased. The shift 
at which the maximum rate of change in the SP type ap-
proached the value 0.82 was described as critical which 
characterizes a stochastic level of the SP type change inci-
dence. It was shown that an increase in the functional load-
ing resulted in a decrease of the critical shift to 200 points 
with eyes opening and to 150 points during the memory task. 
The shift of the mutual SPs determination was minimal for 
‘random’ EEG. Thus, the SPs of the neighboring analysis 
epochs within a single actual EEG only have a significant 
deterministic influence on each other where the overlap in 
epochs is no longer than 50 points. At greater shifts between 
the epochs, the estimations of the SP type alternation de-
crease practically to a stochastic level. Notice that for ‘ran-
dom’ EEG the mutual SPs determination was less than 50 
points. This means that the SP types changed more fre-
quently during an increase in the functional loading with 

eyes opening and then the memory task. At the same time, 
this process did not reach the values of ‘random’ EEG, thus 
reflecting the non-ocasional character the findings in the 
actual EEG. 

Earlier Soroko et al. [302-305] and Bodunov [2, 306-
308] have demonstrated that transition probabilities from one 
type of SP to another in the same subject were unchanged 
with time progression during the same functional state of the 
brain. These transition probabilities changed when the func-
tional state changed. Moreover, transition probabilities from 
one type of SP to another were different in different indi-
viduals, thus reflecting individual peculiarities of brain func-
tioning [2, 302-308].  

Table 2. Time Shift Between Neighboring EEG Epochs 

Where the Variability in Type of SPs Increased to a 

Stochastic Level of the SP Type Change Incidence 

which is Equeal to 0.825. Types of Individual EEG 

Short-Term SPs were Determined with the Help of a 

Probability-Classification Analysis [5, 82] 

Condition Shift 

Eyes closed 300 

Eyes opened 200 

Memory task 150 

“Random” EEG 50 

‘Shift’ = the number of the points of a digitized EEG signal between the initial mo-
ments of the neighboring analysis epochs. ‘Random EEG’ = surrogate data: each 
channel of the actual EEG was subjected to a randomized mixing of SPs. In such a 
way, the natural dynamics of the SP sequence within each EEG channel was com-
pletely destroyed, but the percentage ratio between different types of SPs remained the 
same. 
 

Notice, that change from one type of SP to another oc-
curs rapidly and abruptly. This is an indicator that the brain 
operates in a stepwise fashion. These steps of brain function-
ing have been referred as ‘microstates’ [40].  

Such apparent “switching” from one dynamic to another 
during the same condition can be interpreted as multivari-
ability, with new patterns being continually created, de-
stroyed, and subsequently recreated. 

What are the Temporal Characteristics of SPs of Different 
Types?  

Considering that each type of EEG segment is character-
ized by a distinct SP type and considering that a single EEG 
spectrum illustrates the particular integral dynamics of tens 
and hundreds of thousands of neurons in a given cortical area 
and at a particular point in time [50], then the absence of 
variance of a single spectrum during several analyzed epochs 
proves that in a given cortical area the same macro-regimen 
of neuronal pool activity is maintained during that period 
(see green outline in Fig. 12).  

A temporary stabilization in the oscillatory states reflects 
maintanance of the relative stability in the neurodynamics 
within that particular time interval [5, 6]. 

Particular sequences of several types of SPs appeared in 
consistent groupings (steady bundle with each other) and 
comprise more integral blocks of EEG structural organiza-
tion (see red outline in Fig. 12) [3, 31, 309]. 

 

Fig. (11). The relative incidence of the SP type change during the 
transition between neighboring EEG epochs of the same EEG dur-
ing different conditions. The data is averaged across all EEGs per 
condition and presented as a mean ± standard deviation and sorted 
from smaller values towards larger. Types of individual EEG short-
term SPs were determined with the help of a probability-
classification analysis [5, 82]. In order to reveal any statistically 
significant differences between certain conditions, the Wilcoxon 
test was applied. Statistical significance was assumed where 
P<0.05. 

‘CE’ = closed eyes; ‘OE’ = open eyes; ‘Epilepsy’ = medication-free 
interictal EEG without epileptiform abnormalities during general-
ized epilepsy in resting conditions; ‘Random EEG’ = surrogate 
data: each channel of the actual EEG was subjected to a randomized 
mixing of SPs. In such a way, the natural dynamics of the SP se-
quence within each EEG channel was completely destroyed, but the 
percentage ratio between different types of SPs remained the same. 
Dark bar represents functional reference baseline - spontaneous 
EEG during resting state with closed eyes. 
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What is the Length of Periods of SP Temporal Stabiliza-

tion? 

Analysis of the average duration of the periods of SP 
temporal stabilization revealed that duration range varies 
significantly, depending on SP type and the condition (Fig. 
13).  

Thus, in average brain “maintains” a stabilization period 
of neural activity during resting condition (closed eyes) be-
tween 2.78 and 4.73 sec (for different SPs). Whereas, for 
example, for the interictal EEG the duration range was 
shifted to longer periods: between 3.56 and 5.51 sec (for 
different SPs) (Fig. 13). In separate cases, the maximum pe-
riods of temporal stabilization for the interictal EEG reached 
34-60 sec (Fig. 14).  

 

 
 

Fig. (12). A sequence of EEG segments of different type each 
characterized by distinct type of short-term SP for one-minute O1 
EEG channel (resting condition with closed eyes).  

Each type of SP is indicated by different color or pattern (the same 
spectral pattern types have the same color/pattern). Numbers indi-
cate 149 spectral patterns calculated on 2-sec EEG epochs with 50 
points shift (0.39-sec). Types of individual EEG short-term SPs 
were determined with the help of a probability-classification analy-
sis [5, 82]. It can be seen that different types of EEG segments have 
a different period of temporal stabilization (as an example, see 
green outline). Examples of consistent groupings of several types of 
SPs are illustrated by red outline.  

 
Importantly, the average periods of temporal stabilization 

measured in the actual EEG were significantly different from 
“random” EEG for any condition Fig. (13). The duration and 
duration range for the ‘random’ EEG were small and were 
shifted towards short periods. This means that the length of 
periods of SP temporal stabilization in the actual EEG is 
much longer than what one would expect if a random se-
quence of SPs is assumed. This provides evidence for the 
non-random character of temporal stabilization of the main 
dynamic parameters of neuronal activity. 

Analysis of the maximum periods of SP temporal stabili-
sation revealed the reduction in the maximum length of peri-
ods SP temporal stabilisation along with the increase in the 
functional loading such as eyes opening and then memory 
task (P<0.0001-P<0.00001) Fig. (14) [5]. Perhaps, the de-
crease in the duration of SP stabilisation periods indicates a 
more dynamic completion of the brain’s operations.  

Additionally, such psychoactive agents as lorazepam and 
methadone and such neuropsychopathological conditions as 
epilepsy, opioid withdrawal and opioid abuse all lead to con-
siderable increase in the length of the maximum periods of 
SP temporal stabilisation (P<0.001-P<0.00001) Fig. (14).  

Not all SP types last equally long. In different conditions 
different SP types ‘prefer’ to stabilize temporally. For exam-
ple, for the interictal EEG of epileptics, the largest maximum 
period of temporal stabilization was found for polyrhythmic 

SP, whereas for the EEG of control subjects, the maximum 
period of temporal stabilization was longest for the 10 Hz 
alpha-rhythmical SP [6]. Polyrhythmic SP is a peaked power 
spectrum which does not have any particular dominant fre-
quency and it reflects a disorganised underlying neurody-
namic. It was suggested that the percent of this SP type may 
be considered as a marker of the degree of neuropsychopa-
thology [310].  

 

Fig. (13). Average periods of SP temporal stabilization for different 
conditions and different SP types. Data averaged across all EEGs 
and EEG channels for all subjects per condition. Types of individ-
ual EEG short-term SPs were determined with the help of a prob-
ability-classification analysis [5, 82]. 

‘CE’ = closed eyes; ‘OE’ = open eyes; ‘Epilepsy’ = medication-free 
interictal EEG without epileptiform abnormalities during general-
ized epilepsy in resting conditions; ‘Random EEG’ = surrogate 
data: each channel of the actual EEG was subjected to a randomized 
mixing of SPs. In such a way, the natural dynamics of the SP se-
quence within each EEG channel was completely destroyed, but the 
percentage ratio between different types of SPs remained the same. 

 
Notice that maximum periods of temporal stabilization 

measured in the actual EEG were significantly different from 
“random” EEG for any condition (P<0.001- P<0.00001) Fig. 
(14). This means that stabilization of the main dynamic pa-
rameters of neuronal activity has non-random character. 

What Are the Spatial Relations Among SP Types Observed 

in Different EEG Channels? 

Studies demonstrated that in different conditions differ-
ent SP type variability among EEG channels was different. 
For example, SP type variability among EEG channels in the 
interictal EEG of epileptics registered during resting condi-
tions with closed eyes was significantly lower than in EEG 
of control subjects [311]. Thus, interictal EEG was charac-
terized by a more homogeneous topological pattern than the 
control EEG. This may reflect a loss of spatio-temporal 
complexity in the interictal EEG that suggests that there are 
spatially more dependent functional processes active in the 
epileptic brain than in the healthy brain. 

Additionally, during the transition between neighboring 
EEG epochs, the SP type changes in less number of EEG 
channels in the interictal EEG than in control EEG [311]. 
Moreover, interictal EEG was characterized by longer peri-
ods of temporal stabilization (up to 9.4 sec) for operational 
modules, which comprise larger number of cortical areas 
(from 5 to 12) than control EEG [311].  

These findings suggest that an epileptic brain is charac-
terized by larger global coordination of brain oscillations 
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from different cortex areas compared to intact brain. This 
spatial coordination persists for a longer time in the epileptsy 
condition compared to healthy condition, thus suggesting 
less dynamic performance of cooperative brain operations – 
dynamic rigidity [311]. 

Recent experimental research demonstrated that there is a 
functional synchronization between SP types found in differ-
ent EEG channels [Fingelkurts and Fingelkurts, in prepara-

tion]. The inter-channel SP synchrony reflects the metastable 
principle of brain functioning [48, 49]. Thus, the operational 
acts of behavioral and mental activity are reflected in the 
periods of short-term metastable states of the whole brain 
and its individual subsystems [9, 48, 49]. 

CONCLUSIONS  

Observed experimental, theoretical and analytical studies 
suggest that EEG short-term SP of particular type may be 

 

Fig. (14). Maximum periods of SP temporal stabilization for different conditions. Data averaged across all EEGs per condition and presented 
as a mean ± standard deviation and sorted from larger values towards smaller. In order to reveal any statistically significant differences be-
tween certain conditions, the Wilcoxon test was applied. Statistical significance was assumed where P<0.05.  

‘CE’ = closed eyes; ‘OE’ = open eyes; ‘Epilepsy’ = medication-free interictal EEG without epileptiform abnormalities during generalized 
epilepsy in resting conditions; ‘Random EEG’ = surrogate data: each channel of the actual EEG was subjected to a randomized mixing of 
SPs. In such a way, the natural dynamics of the SP sequence within each EEG channel was completely destroyed, but the percentage ratio 
between different types of SPs remained the same. Dark bar represents functional reference baseline - spontaneous EEG during resting state 
with closed eyes which is distinct from both sleep and any type of task involving explicit perception, memory or other cognitive activity and 
provides a priori hypotheses about the way in which the brain will respond across a wide variety of task conditions and/or brain states. 
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considered as a single event in EEG phenomenology from 
the viewpoint of its preferential association with the actual 
state of the neurodynamical system and with a distinct subset 
of the totality of brain functions including sensory and cog-
nitive processes.  

Experimentally it was demonstrated that the parameters 
of the composition of EEG short-term SP types, their percent 
ratio and the peculiarities of SP type alternation in the ana-
lyzed EEGs depend on behavioral traits, cognitive activity 
and neuropsychopathology.  

The usage of the concept of EEG short-term SP type as a 
single event in EEG phenomenology and the parameters of 
the composition of EEG short-term SP types and their per-
cent ratio enable us to reveal or confirm previously reported 
rules of ongoing brain activity [40, 291, 298, 312, 313, 314]:  

• Brain activity consists of a limited set of functional 
states; 

• Different functional states may have different dura-
tion; 

• Not all functional states occur with the same fre-
quency – some of them seem to be ‘preferred’; 

• Ongoing brain activity is determined by potentially 
active states, i.e. those states which are ready to pro-
vide necessary activity in the particular circum-
stances;  

• Transitions from one functional state to another are 
executed abruptly; 

• Functional synchronization among different cortex 
areas is realized by the temporal coincidence of the 
transitions from one functional state to another going 
on in different cortex areas; 

• Psychopharmacological influence, neuropsycho-
pathology, and change of the brain functional state or 
cognitive task result in the change of (a) the number 
of types of functional states, (b) the percentage of 
dominant types of functional states, (c) the transition 
probability between distinct types of functional states, 
(d) the duration of functional states and (e) the pa-
rameters of the temporal coincidence of the transi-
tions from one functional state type to another regis-
tered in different cortex areas; 

• A high multi-variability of the EEG parameters co-
exists with a simultaneous stabilization of these pa-
rameters in time. Thus, the brain dynamics may be 
viewed here as balancing between multi-variability 
and metastability; 

• Taking into account the hierarchy of the segmental 
description of the EEG in different time scales, it 
could be suggested that the discrete structure of brain 
activity depicted in the EEG piecewise stationary 
structure is the framework within which a variety of 
rapid ‘microscopic’ variables of a large system can 
obey the ‘macroscopic’ operational structure of brain 
activity. Thus, the spatial and temporal hierarchy of 
discrete metastable states of neuronal assemblies can 
serve as a basis for functioning of such a potentially 
multivariable system like the brain. 

Taking together the findings observed in this paper, it 
seems important to establish repertoires of mental and cogni-
tive operations based on the types of observed SPs.  
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