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Abstract

For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9
studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological
and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG
spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the
examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or
neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were
observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different
groups of conditions in accordance to oscillations’ functional significance. The results suggested that (a) there is a limit in
the number of local states available to the cortex and many ways in which these local states can rearrange themselves and
still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and
unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal.
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Introduction

Electroencephalogram (EEG) still remains one of the main

methods (another one is fMRI) in clinical and cognitive

neuroscience. It is well known that an EEG has a piecewise

stationary structure which is considered to be a result of ‘‘gluing’’

of stationary processes with different probability characteristics (for

the reviews see [1–7]). It is proposed that each piecewise stationary

EEG segment reflects the oscillatory state of a transient neuronal

assembly [8–15] which signifies a functional cortical state [16–19].

State can be micro- or macro- depending on finer- or coarser-grained

description [20]. The state is micro in relation to macrostate to which

it belongs: the important point here is the difference in the amount

of detail given by the descriptions. Many different EEG

microstates correspond to any one particular macrostate. In such

a way, the dynamics of brain activity within a given macrostate

can be considered as a sequence of relatively stable brain

microstates of different types which are reflected in the EEG as

piecewise stationary segments [21–23]. Usually microstate is

referred to duration of milliseconds and seconds and macrostate

corresponds to minutes and hours. An EEG state is a steady,

transient and self-organised operational unit [24] which has been

proposed to present the basic building blocks of cortical activity

accompanied by mentation, thinking and information processing

[25]. Activity within each state is stable (or quasi-stable) and is

likely to represent a fingerprint of a functionally distinct neuronal

network mode. Cortical activity is characterised simultaneously by

local (specialized) and global (integrative) states at each moment in

time [4,8,19,26–30]. Each local EEG is characterized by sequence

of oscillatory states [31–33]. Each state from local EEG together

with states from other local EEGs at any given moment of time

forms a global oscillatory state [34] which is presented as a mosaic

of specialized modules constituting nodes in a dynamic network.

Each EEG oscillatory state (either local or global) is characterized

by multiple EEG oscillations where different oscillations are mixed

in different proportions depending on the level of vigilance,

perceptual, cognitive and mental operations. Global functional

states of the cortex have been extensively studied by means of

‘‘momentary brain electric field configurations’’ ([25,35–37] and

others). Local EEG oscillatory states have been examined by

means of local short-term power spectra ([31,38–46]; for the

review see [47]). The concept of spectral pattern (SP) was introduced

where the focus is on the overall shape of short-term power

spectrum rather than on the exact values of the power [48]. For

justification for the usage of local short-term SPs for characterisa-

tion of local EEG oscillatory states see Appendix S1 (Supporting

information).

Intriguingly, these two independent approaches, - one for

assessing global functional states and another for examining local

functional states of the cortex, - using different methodologies

revealed strikingly similar picture: (a) cortex states change in a

non-continuous manner: functional state over time shows extend-

ed periods during which state is stable (or quasi-stable); these

periods of quasi-stability are concatenated by rapid and major

changes of state (for global states: [49]; for local states: [31,40,45]),

(b) a limited number of states exist (for global states: [35,50]; for
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local states: [1,31,40,45,51]), (c) only 4–5 state classes largely

dominate the spontaneous EEG in awake, healthy adults (for

global states: [50,52,53]; for local states: [31]), (d) not all states last

equally long and the length of the states is much longer than what

one would expect if a random sequence of states is assumed (for

global states: [50]; for local states: [31,45;47]), (e) the duration and

frequency of appearance of states are altered in different cognitive

modes (for global states: [25;54]; for local states: [31,45]) and in

several pathological conditions such as depression (for global

states: [55]; for local states: [56]) and epilepsy (for global states:

[57]; for local states: [34,58]), as well as after drug intake (for

global states: [59;60]; for local states: [61,62]). Such convergence

between the results from two independent methodologies suggests

that both approaches are reliable and they capture the same

temporal principles of neurodynamics but in different spatial

scales.

However, several important questions have not yet been

answered regarding local EEG oscillatory states. Detailed analysis

of the various types of local EEG oscillatory states (in terms of SP

types) suggested that an individual (local) EEG across all studied its

phenomenological manifestations is best described by a stable and

restricted set of SP types [1,31,40,45,46,51]. Additionally, the

existence of 6 [40] to 11 [45] universal (not necessary dominant)

SP types has been demonstrated. These SP types were the same for

all studied conditions and it was suggested that they reflect

universal short-term quasi-stationary elements which compose the

EEG structure [40,45]. However, to have a more realistic and

detailed picture of the number and type of EEG oscillatory states

which are universal, unique or optional more studies under more

diverse conditions are required. Additionally, several questions

need to be answered: (a) Does diversity of local EEG oscillatory

states vary as a function of age? (b) Do parameters of dynamic

repertoire (that is the set of dynamic behaviours that a neural

population can perform in the proximity of its equilibrium state

[63]) of local EEG oscillatory states change during cognitive

performance, altered states of consciousness and certain neuro-

psychological disorders? (c) How many SP types are activated by a

typical cognitive task or condition, and whether this varies by task

category? and (d) How many cognitive tasks or conditions a typical

SP supports?

To explore these issues, we performed an aggregated analysis

(do not confuse with meta-analysis) of dynamic repertoires of EEG

oscillatory states (indexed by SPs types) in 13 conditions (examined

over 9 studies), covering healthy-normal, altered and pathological

brain states. Aggregated analysis of these previously conducted

experimental EEG studies was performed within the same

methodological and conceptual framework – the probability-

classification analysis of short-term EEG spectral patterns (see

EEG data processing below). This methodological approach

enables us to reveal peculiarities and generalities of EEG

oscillatory states across a multitude of different conditions and

tasks which cannot be seen within any one study. Furthermore,

such methodological approach establishes whether neuroscientific

findings are consistent and can be generalized across populations,

settings, conditions or tasks, or whether findings vary significantly

by particular subsets. Finally, an aggregated analysis limits bias of

individual studies and, hopefully, will improve reliability and

accuracy of generalized conclusions.

Materials and Methods

The aim of this study was to explore the dynamic repertoires

and oscillatory types of EEG states in 13 diverse conditions

(examined in 9 studies) which cover healthy-normal, altered and

pathological brain states. These conditions included: (1) rest with

eyes closed in healthy subjects (CE), (2) rest with opened eyes in

healthy subjects (OE), (3) waiting period (anticipation of and

preparation for an event) of the memory task with opened eyes in

healthy subjects (W), (4) memorizing period (information encod-

ing) of the memory task with opened eyes in healthy subjects (M),

(5) keeping-in-mind period (information retention) of the memory

task with opened eyes in healthy subjects (K), (6) retrieval period of

the memory task with opened eyes in healthy subjects (R), (7)

benzodiazepine-induced sedation with eyes closed in healthy

subjects (B), (8) natural sleep in healthy subjects (S), (9) hypnosis

with opened eyes in healthy subject (Hyp), (10) interictal rest with

eyes closed in medication-free patients with generalized epilepsy

(E), (11) rest with eyes closed in opioid-dependent patients (O), (12)

rest with eyes closed in opioid-withdrawal patients (OW), (13) rest

with eyes closed in medication-free patients with major depression

(D).

The following studies examined the aforementioned conditions:

(a) study-1: multistage memory task [45], conditions tested: 1–5; (b)

study-2: working memory [64], condition tested: 6; (c) study-3:

benzodiazepine sedation [61], condition tested: 7; (d) study-4:

major depression [56], conditions tested: 1 and 13; (e) study-5:

generalized epilepsy [58], conditions tested: 1 and 10; (f) study-6:

opioid dependence [62], conditions tested: 1 and 11; (g) study-7:

abstinence [65], condition tested: 12; (h) study-8: hypnosis [66],

condition tested: 9; (i) study-9: sleep (not published), condition

tested: 8.

All experiments were undertaken with the understanding and

written consent of each participant, with the approval of the

appropriate local ethics committees, and in compliance with

national legislations and the Code of Ethical Principles for Medical

Research Involving Human Subjects of the World Medical

Association (Declaration of Helsinki) (please see provided refer-

ences for each study below). Studies 1 and 5 were approved by

Moscow State University ethical committee, studies 2, 8 and 9

were approved by University of Turku ethical committee and

studies 2, 4, 6 and 7 were approved by Helsinki University Central

Hospital ethical committee.

Readers interested in an in-depth discussion and technical

details of each of these studies are advised to refer to the provided

references. Here we shall briefly describe only some central aspects

of each study and characteristics of the computational techniques

used.

1. Study-1: Multistage Memory Task (See Details in [45])
One-min EEGs were recorded for 12 healthy, right-handed

adult subjects (males, aged 19–26) during resting condition (closed

and open eyes) and the multistage memory task (waiting,

memorizing of the actual matrix object, and retention of the

perceptual visual image). Each stage of the memory task was 20-

sec in duration.

The visual stimuli presented in front of the subjects to memorize

were non-verbalizable matrices composed of nine square elements

presented on a matrix screen. The combination of the squares was

selected quasi-randomly and presented on the screen for 20-sec by

lighting with bottom-mounted red light diodes. Therefore, three

distinct short-term (20-sec) periods were tested: before, during, and

after the stimulus exposure.

Eight Ag/AgCl electrodes were placed bilaterally on the

subject’s scalp using the 10/20 system of electrode placement at

F3, F4, C3, C4, P3, P4, O1, O2. Vertical and horizontal electro-

oculograms were recorded. All electrodes were referred to linked

ears. Raw EEG signals were amplified and filtered in 0.5–30 Hz

frequency range and digitized at a sampling rate of 128 Hz by a

EEG Oscillatory States across Brain Conditions
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12-bit analog-to-digital converter. The impedance of the recording

electrodes was always below 5 kV. The presence of an adequate

EEG signal was determined by visual inspection of the raw signal

on the computer screen. All in all 96 (for resting condition with

eyes closed) and 97 (for resting condition with open eyes) artifact-

free 1-min EEGs and 288 (waiting period of the memory task), 288

(memorizing period of the memory task) and 289 (keeping-in-mind

period of the memory task) artifact-free 20-sec EEGs were taken

into aggregated analysis.

2. Study-2: Working Memory (See Details in [64])
A 20-channel EEG was recorded for 9 healthy, right-handed

adult subjects (aged 20–29, 4 males) during a modified Sternberg’s

memory task. The memory set (encoding) consisted of four

auditorily presented stimuli. The frame set (retrieval) size was kept

constant and consisted of one stimulus.

The stimuli consisted of 24 auditory verbs (spoken with a female

voice). A total of 192 four-verb memory sets were constructed such

that each of the verbs had to occur with equal frequency and only

once in the same memory set. In 50% of the cases, the frame set

verb was among the previously presented four-stimulus block. In

total, there were 192 trials, which were presented to the subjects in

a pseudorandomized order. The experiment was designed in such

a way that it was possible to test separately resting, waiting,

encoding, keeping-in-mind, and retrieval short-term periods of the

memory task.

In the present study 16 EEG channels (F7, F8, F3, F4, Fz, T3, T4,

C3, C4, Cz, T5, T6, P3, P4, O1, O2) were used for the analysis. All

electrodes were referred to linked ears. The data were recorded

using a sampling rate of 200 Hz with a frequency band of 0.3 to

70 Hz. The impedance of the recording electrodes was always

below 5 kV. Full EEG streams were split into 5 distinct segments:

resting period, waiting period, encoding period, keeping-in-mind

period, and retrieval period. A total of 54 artifact-free 1-min EEGs

for only retrieval period were taken for the aggregated analysis.

3. Study-3: Benzodiazepine Sedation (See Details in [61])
Eight nonsmoking healthy, right-handed human subjects (aged

20–29, 4 males) participated in the study. Participants underwent

either lorazepam (AtivanH 4 mg/ml, Wyeth Lederle) 30 mg/kg or

placebo (saline) injection in a randomized, double-blind, placebo–

controlled crossover design study. The EEG recording began

5 min after the infusion. Two sessions (lorazepam or placebo) were

separated by 1 week.

Subjects underwent continuous 10 min (eyes closed and open

condition 5 min each) EEG registration with 20 electrodes (F7, F8,

Fz, F3, F4, T3, T4, C5, C6, Cz, C3, C4, T5, T6, Pz, P3, P4, Oz, O1,

O2) in accordance with the International 10/20 extended system,

with a frequency band of 0.06 to 86 Hz and sampling rate of

300 Hz. The impedance of the recording electrodes was always

below 5 kV and the nose electrode was used as reference. All EEG

streams were split into four distinct groups: lorazepam–eyes-

closed, lorazepam–eyes-open, placebo–eyes-closed, placebo–eyes-

open. A total of 40 artifact-free 1-min EEGs for only lorazepam–

eyes-closed were taken for the aggregated analysis.

4. Study-4: Major Depression (See Details in [56])
Twelve medication-free outpatients with depression (mean age

43.5613.3 years, all right-handed, 7 males) and ten sex- and age-

matched non-smoking healthy controls (mean age 40612.9 years,

all right-handed, 5 males) participated in the study. All subjects

underwent a Structured Diagnostic Interview (SCID) for DSM-

III-R. All outpatients with depression met the DSM-III-R criteria

for a major depressive episode. They also had a score of at least 18

on the 17-item Hamilton Depression Rating Scale (HAM) at the

time of the study procedure (the group mean HAM score was

23.764.2). All controls were free from psychiatric illnesses and the

mean HAM score for the control group was 0.560.8.

Subjects underwent EEG registration in accordance to the

International 10/20 extended system, 20 minutes in duration

during eyes closed rest with a frequency band 0.06–86 Hz and

sampling rate of 300 Hz. The impedance of the recording

electrodes was always below 5 kV and the nose electrode was

used as reference. In the present study EEGs from 20 electrodes

(F7, F8, Fz, F3, F4, T3, T4, C5, C6, Cz, C3, C4, T5, T6, Pz, P3, P4,

Oz, O1, O2) were analyzed. EEG data were split into two distinct

groups: ‘‘depressive’’ and ‘‘control.’’ A total of 182 (for eyes closed

rest in healthy subjects) and 206 (for eyes closed rest in medication-

free patients with major depression) artifact-free 1-min EEGs were

taken for the aggregated analysis.

5. Study-5: Generalized Epilepsy (See Details in [58])
Six medication-free right-handed patients with generalized

epilepsy (aged 17–40, 3 females) were selected for the study.

Inclusion criteria were the persistent presence of epilepsy for more

than one year, and the absence of (a) any epileptiform activity in

the interictal EEG (that refers to the period of time between

seizures), and (b) any neurological condition other than epilepsy,

or any acute or chronic medical illness at the time of the EEG

registration. Interictal epileptiform activity was identified via visual

inspection according to the criteria laid down by the International

Federation of Societies for Electroencephalography and Clinical

Neurophysiology. All patients were in good physical health,

determined by a physical examination and laboratory evaluation

including a complete blood count, glucose, and hepatic enzymes,

renal and thyroid analyses. Patients could have taken medication

for extended periods but not during the final two weeks before

EEG registration.

Seven sex- and age-matched healthy control subjects (aged 19–

35, 3 females) participated in the study. Before inclusion, the

control subjects underwent a medical examination and were also

screened for EEG epileptiform activity. All control subjects had

epileptiform-free EEGs.

Five 1-min EEGs were recorded for each subject during resting

condition (closed eyes). Sixteen Ag/AgCl electrodes were placed

bilaterally on the subject’s scalp using the 10/20 system of

electrode placement at O1, O2, P3, P4, C3, C4, Cz, T3, T4, T5, T6,

F3, F4, Fz, F7, F8. Vertical and horizontal electro-oculograms were

recorded. All electrodes were referred to linked ears. Raw EEG

signals were amplified and bandpass-filtered in the 0.5–30 Hz

frequency range and digitized at a sampling rate of 128 Hz by a

12-bit analog-to-digital converter. The impedance of the recording

electrodes was always below 5 kV. A total of 18 (for interictal

condition in epileptics) and 14 (for resting condition in control

subjects) artifact-free 1-min EEGs were taken for the aggregated

analysis.

6. Study-6: Opioid Dependence (See Details in [62])
The study included a total of 22 right-handed opioid-dependent

patients (aged between 21 and 46 years, 14 males) and 14 right-

handed controls (mean age 33.366.4 years, 6 males). All patients

had abused opioids for 4–26 years (mean 11 years). Self-reported

daily dose was 0.05–2 g for intravenous administration of heroin

and 2–32 mg for intravenous administration of buprenorphine. All

22 patients met DSM-IV criteria for opioid dependence, while

healthy controls did not fulfill any criteria for DSM-IV disorders

on Structured Clinical Interviews I and II. Neuropsychologic tests

showed normal intelligence in all subjects.

EEG Oscillatory States across Brain Conditions
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The patients were investigated on the day of admission, and all

had abused opioids within 12 h before EEG registration; the

dosages were the patients’ usual dosages. None of the patients had

a withdrawal syndrome at the time of the EEG registration, as

verified by a Gossop test. Each subject underwent 5 min of EEG

registration during eyes closed rest with a frequency band of 0.06

to 86 Hz and sampling rate of 600 Hz. The impedance of the

recording electrodes was always below 5 kV and the nose electrode

was used as reference.

In the present study EEGs from 20 electrodes (F7, F8, Fz, F3, F4,

T3, T4, C5, C6, Cz, C3, C4, T5, T6, Pz, P3, P4, Oz, O1, O2) were

analyzed. EEG data were split into two distinct groups: ‘‘opioid’’

and ‘‘control.’’ A total of 110 (for opioid dependence condition)

and 70 (for resting condition in control subjects) artifact-free 1-min

EEGs were taken for the aggregated analysis.

7. Study-7: Abstinence (See Details in [65])
In the study 13 right-handed, opioid-dependent patients (mean

age 3265 years, 8 males) and 14 controls (mean age 33.366.4

years, 6 males) participated. All patients had abused opioids for 4–

26 years (mean 10 years). Self-reported daily dose was 0.05–1.2 g

for intravenous administration of street heroin and 2–16 mg for

intravenous administration of street buprenorphine. All patients

met DSM-IV criteria for opioid dependence, while all controls did

not fulfill any criteria for any DSM-IV disorder.

At the time of the EEG assessment, patients had been abstinent

for 12–15 days. The severity of withdrawal syndrome was verified

by Gossop test. Each subject underwent 5 min of EEG registration

during eyes closed rest with a frequency band of 0.06–86 Hz and

sampling rate of 600 Hz. The impedance of the recording

electrodes was always below 5 kV and the nose electrode was

used as reference.

In the present study EEGs from 20 electrodes (F7, F8, Fz, F3, F4,

T3, T4, C5, C6, Cz, C3, C4, T5, T6, Pz, P3, P4, Oz, O1, O2) were

analyzed. EEG data were split into two distinct groups:

‘‘withdrawal’’ and ‘‘control.’’ A total of 65 artifact-free 1-min

EEGs for opioid-withdrawal condition were taken for the

aggregated analysis.

8. Study-8: Hypnosis (See Details in [66])
The subject, a 39-year-old right-handed female without a

history of neurological or psychiatric illness was an experienced

participant in hypnosis experiments. The participant displayed all

phenomena typically associated with very highly susceptible

individuals (virtuosos), such as vivid hallucinations and amnesia.

Furthermore the participant instantly responded to a posthypnotic

suggestion (e.g. a word or a sign) about ‘‘entering hypnosis’’ which

made it possible to induce or terminate hypnosis without standard

experimental induction procedures.

The subject had previously been given a posthypnotic

suggestion about entering hypnosis or waking when hearing the

experimenter say certain pseudowords. During the experiment,

hypnosis was induced and terminated with this technique. The

only instruction given to the subject was to focus on a LED-light in

front of her (about 2 meters distance) and avoid unnecessary eye

movements. Each session started with two minutes of EEG data

acquisition (baseline condition) while the subject sat in a

comfortable chair and had her eyes open and focused on the

LED-light. This was followed by three EEG acquisition blocks

where hypnosis and non-hypnosis (being induced by a posthyp-

notic suggestion) followed each other. Each block consisted of 3–4

hypnosis and non-hypnosis periods, each lasting about 2 minutes.

The three blocks (each lasting about 10 minutes) were separated

by a break of about 5 minutes in normal waking state while the

subject could stretch herself. The sequence of hypnotic and non-

hypnotic conditions was varied so that each condition started the

blocks equally often. The hypnosis and non-hypnosis periods

within the blocks also varied (+/230 seconds) in order to prevent

the subject from anticipating the change.

Spontaneous electrical brain activity was recorded with a 20

EEG channels (Fp1, Fp2, F7, F8, FZ, F3, F4, T3, T4, C3, C4, CZ, T5,

T6, PZ, P3, P4, OZ, O1, O2) with a frequency band of 0.05 to

100 Hz (sampling rate of 500 Hz). EEG was recorded with an

electrode cap in accordance to the International 10/20 extended

system; the nose electrode was used as reference. The impedance

of each electrode was monitored before data acquisition and was

always below 5 kV. Vertical and horizontal electro-oculograms

were recorded. A total of 22 artifact-free 1-min EEGs for hypnotic

condition were taken for the aggregated analysis.

9. Study-9: Sleep (Not Published)
Nine subjects (mean age 23.761.51 years, 4 females) partic-

ipated in the study. Six 1-min EEGs were recorded during Stage 2

and Stage 3 of NREM sleep during the first half of the night. The

impedance of the recording electrodes was always below 5 kV and

right ear mastoid was used as reference. In the present study EEGs

from 20 electrodes (Fp1, Fp2, F7, F8, Fz, F3, F4, T3, T4, Cz, C3, C4,

T5, T6, Pz, P3, P4, Oz, O1, O2 in accordance to the International

10/20 extended system) were analyzed. A total of 27 artifact-free

1-min EEGs for sleep condition were taken for the aggregated

analysis.

10. EEG Artifacts Control
EEG epochs containing artifacts (amplitude.80 mV) due to eye

blinks, significant muscle activity, and movements were automat-

ically removed. In two studies (study-6 and study-7) EEG

components containing artifacts were automatically removed by

means of ICA (Independent Component Analysis) procedure. The

presence of an adequate signal was determined by visually

checking each raw signal on the computer screen after automatic

artifact rejection. If some residual artifacts were still present they

were marked and then automatically rejected from further

analysis.

Instructions designed to minimize movement and relax jaw

muscles resulted in suppressing the myogram class of artifact to the

extent that the high-frequency spectrum was not significantly

affected. Cardiac interference at low frequencies was also found to

be minimal, with no spectral peak-detection at the heartbeat

frequency of around 1 Hz, or its harmonics. The subjects from all

studies were instructed also to look straight in front of them (even

when the eyes were closed) and to avoid unnecessary eye

movements.

11. EEG Data Processing
The basic procedure for data analysis was as follows: for each

subject a full EEG stream free from any artifacts was fragmented

into consecutive 1-minute epochs (or 20-sec epochs for study-1).

This permitted us (a) to normalize EEG data from different studies

for the length (in different studies EEG duration was different):

EEG oscillatory states were quantified for the period of 1-minute

(or 20-sec) and (b) to obtain a relatively large number of analyzed

epochs for each subject. All 1-minute (or 20-sec) EEGs were split

into groups which corresponded to the aforementioned conditions

within each study. Within each group further data processing was

performed for each separate 1-minute (or 20-sec) portion of the

signal. Due to the technical requirements of the tools used to

process the data, EEGs were re-sampled to 128 Hz in cases where

the raw EEG was recorded at a higher sampling rate. This

EEG Oscillatory States across Brain Conditions
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procedure should not affect the results since 128 Hz sampling rate

meets the Nyquist Criterion [67] of a sample rate greater than

twice the maximum input frequency which is sufficient to avoid

aliasing and preserve all the input signal information.

After re-sampling, local EEG oscillatory states were identified

for each EEG channel separately: this procedure was undertaken

in four stages (Fig. 1). During the first stage of EEG analysis data

series from each EEG channel were divided into overlapping

windows in order to capture changing EEG dynamics. Local EEG

oscillations were quantified by calculation of individual short-term

EEG SPs. Individual power spectra were calculated in the range of

1–30 Hz with 0.5-Hz resolution, using Fast Fourier Transform

with a 2-sec Hanning window shifted by 50 samples (0.39-sec) for

each one-minute EEG channel (Fig. 1). The uniformity of the time

window across frequencies is considered a limitation of FFT

[68,69]. However, chosen frequency range of 1–30 Hz and

parameters for FFT (2-sec Hanning window and 50 samples lag)

have proved to be the most effective for extracting oscillatory

patterns from the signal based on previous studies [70–73]. Sliding

spectral analysis with overlapping segments, previously applied to

EEG signals [74,75], (a) takes the non-stationarity of the time

series into account, (b) compensates for the effects of windowing,

(c) detects more clearly systematic oscillatory changes in the

signal’s activity and (d) prevents loss of information due to residual

activity. Additionally, using overlapping intervals (which just

means a different aggregation scheme) cannot add any artefactual

information [76]. Effects of sliding analysis on SP types can be

found in [45].

Log transformation of the power spectra was not used in the

present study for the following reasons: Log transformation usually

normalizes a power spectrum, but, at the same time, it artificially

reduces the contrast of the differences between large and small

power values. This leads to an increased contribution of the small

amplitude values and correspondently the noise into a total

spectrum. For the purpose of this paper ‘‘clean’’ power spectra

without noise contamination are of great importance. Addition-

ally, log transformation can exaggerate extremely small, but

topographically reproducible errors in areas with low EEG power.

1–30 Hz frequency range was chosen because approximately

98% of spectral power lies within these limits [77]. Although it has

recently been proposed that frequencies above 30 Hz (gamma

band) may be functionally informative, there are a number of

methodological issues which lead us to exclude frequencies above

30 Hz from the analysis: (a) it was shown that volume conduction

has little influence on the shape of the spectrum below around

25 Hz, however spatial filtering is significant for frequencies above

25 Hz [78]; (b) high-frequency spindles have a very low signal-to-

noise ratio, which results in considerable noise contamination of

the gamma band; (c) the dynamics of high-frequency effects may

be a trivial by-product of power changes in lower frequencies [79],

(d) increased power in the gamma range may be due to the

harmonics of activity in lower frequency ranges, and/or due to the

ringing of filters by EEG spikes recurring at theta rates [33], (e) the

gamma band may be an artefact of (un)conscious micro-

constrictions of body and/or face muscles [80–82]; (f) comprising

just 2% of the spectral power [77], contribution of high-frequency

band to the spectrum cannot be significant; (g) Bullock et al. [83]

demonstrated many ‘‘good’’ rhythms in the 2–25 Hz range which

were mainly sinusoidal but did not find them in the 30–50 Hz

band. In the light of the above, there may be difficulties in carrying

out a meaningful interpretation of effects at the high-frequency

band regardless of how powerful or statistically significant they are.

Further, interpretations of gamma band in relation to higher

cognitive activity are over-emphasized since: (a) isolated ganglia of

invertebrates also show significant gamma responsiveness [84] and

(b) gamma oscillations are present during states such as sleep, deep

anesthesia and persistent vegetative state, where conscious

cognitive processing is absent [85–88].

DC drifts were removed using high pass filters (1 Hz cut-off).

After the calculation of short-term EEG SPs, the total number

of individual SPs for each channel of 1-minute EEG was 149

(Fig. 1) and 50 for each channel 20-sec EEG. The number of 1-

minute (or 20-sec) EEGs available for each subject varied between

5 and 24 depending on study and condition.

During the second stage, each SP was labelled according to the

class index it belongs to, with the help of a probability-

classification analysis of the short-term EEG SPs (published in

[45], see also Appendix in [89]). A probability-classification

analysis was performed automatically in four steps separately for

each channel of 1-minute (or 20-sec) EEG. During first step a set of

standard SPs was generated automatically: a pool of SPs was built

from all the SPs of the entire EEG signals (all locations) for all

subjects within each study (Npool=149 (or 50) SPs6n EEG

channels6n one-minute (or 20-sec) EEGs6n subjects). From this

pool (Npool=14 016–3 410 968 of SPs depending on the study), all

identical SPs with dominant power peaks (peaks that rise

significantly above the general average) were counted automati-

cally. The peak detection was based on normalizing the SP to

within-SP relative percentages of magnitude, where acceptance is

achieved when the peak exceeds a given (60%) percent-magnitude

(100% corresponds to the magnitude of the highest peak within

the SP). According to the preliminary study, this value has proved

to be the most effective for peak detection. The set of SPs with the

highest count were the most probable candidates to form the ‘‘set

of standard SPs.’’ Only those SPs with a minimal mutual

correlation were selected for standard SPs set (first step). Notice

that there is no universal set of standard SPs: each EEG data

(different studies) require formation of new set of standard SPs.

According to our experience the sets of standard SPs from

different studies overlap significantly, but they are not identical

neither in number of SPs, nor in SP’s types.

During the second step, the initial matrix of cross-correlations

(Pearson’s correlation coefficients, CC) between standard and

current individual SPs of analyzed EEG was calculated for each

channel separately. The current SPs that their CC passed the

acceptance criteria of r $0.71 were attributed to their respective

standard classes. Therefore, the same current SPs may be included

simultaneously into different standard classes. The CC acceptance

criteria r was determined such as for r $0.71 more than 50% of

the SP variances were coupled/associated.

During the third step, the current SPs included in a particular

class were averaged within this class. The same procedure was

performed for all classes separately for each EEG channel. On the

back of this, the standard spectra were reconstructed but this time

taking into account the peculiarities of the spectral description of

concrete channel of the particular EEG. In this way an

‘‘actualization’’ of the initial standard SP set was performed. In

other words, standard SPs were converted into so-called actual

spectral patterns. Notice that the main frequency peaks in the

actual SP of every class stay the same as in the corresponding

standard SP’s classes. However, overall shape of the power

spectrum was automatically modulated in the direction to better

represent the multitude of all SPs within each class in each given

EEG channel.

An actual SP set was in turn used for the fourth step–the final

classification of the current SPs: each of current SPs was attributed

to only one actual SP class for which the CC was the maximum of

the set of r $0.71.
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Figure 1. Data processing scheme. First stage: Sliding spectral analysis was conducted separately for each subject and each channel of 1-minute
(or 20-sec) EEG. O1= Left occipital EEG channel. Second stage: Adaptive classification of short-term spectral patterns (SP) was performed separately for
each subject and each channel of 1-minute (or 20-sec) EEG. The small gray numbers under each SP represent the running numbers from 1 to 149 for
1-minute EEG. The number in the square represents the class to which a given SP was assigned to during the classification procedure. Third stage:
Segmentation of the EEG signal was performed based on SP type changes for each EEG channel separately. The moment of SP-segment type change
marks an accompanying change in EEG oscillatory state. Fourth stage: Selection of clusters of SP’s classes based on natural variability of resonance
frequencies within 60.5 Hz.
doi:10.1371/journal.pone.0087507.g001
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The probability-classification technique employs correction

algorithm to achieve a significant reduction in the variance of

single spectral estimations and to take into account the relationship

between neighbour frequencies in the frequency continuum:

choosing the maximum CC out of the three values of the

correlation function, which was calculated between the standard SP

and the current SP on zero shift and on double-side shift by one step

(60.5 Hz). This increases the sensitivity of this analytical approach

in revealing the dynamics of EEG oscillatory patterns. Described

SP classification method made it possible to identify up to 100% of

the individual single spectra in the EEGs due to the algorithm’s

ability to adapt to local signals. Therefore at every time step a valid

classification was reached, i.e., there was no ‘undecided’ category.

As a result of the probability-classification procedure, each

current SP was labelled according to the index of the class to

which it belonged. Hence, each EEG signal was reduced to a

sequence of individually classified SPs. Thus, a sequence of SP

labels that represents the sequence of EEG oscillatory states

through which the system passes was obtained (Fig. 1). Examples

of SP types can be found in our previously published papers (see

Fig. 3 in [64]; Fig. 1 in [46,56,58,66]; Fig. 7 in [89]; and Fig. 2 in

[113]).

During the third stage, each EEG channel was segmented

(Fig. 1) based on SP type changes. A single EEG spectrum reflects

the coordinated work of tens and hundreds of thousands of

neurons at a particular point in time [90]. Therefore, the absence

of variance of a single SP type during several analysed epochs

suggests that the same macro-regimen of neuronal pool activity is

maintained throughout that period. Thus, periods of several

consecutive EEG epochs which are characterized by the same SP

type comprise an SP-segment i.e. an EEG segment of quasi-

stationary oscillatory activity or an EEG oscillatory state. The

moment of change from one type of SP-segment to another marks

a transition in EEG oscillatory state (see Fig. 1) within each EEG

channel. Therefore the duration of states varies (Fig. 1, Third

Stage). Temporal coordinate of boundary of a given SP-segment is

dependent on a discrete temporal lag of 0.39 s used for calculation

of SPs (see above). Considering that the shift in 0.39 s was the most

effective on disclosing oscillatory patterns from the signal in

modelling study [73], one may assume that measured temporal

coordinates of boundaries of SP-segments approach the real ones

(in frequency domain). In such a way the types of EEG oscillatory

states (indexed by SP types) and their number were obtained

(Fig. 1) for each EEG channel and studied condition.

It is known that peak frequency of characteristic EEG

oscillations is fairly stable and in most individuals varies about

0.5 Hz from day to day or during a single session [91–93] and it is

also consistent for various subject populations [94,95]. In order to

accommodate this natural variability in peak frequency, SP classes

for each EEG channel within each study were grouped into

clusters during the fourth stage as shown in Figure 1. If an SP

cluster was found in one or more EEG channels for all EEGs (in

average) for a given condition within a given study then this type of

SP cluster was assigned to the repertoire of that particular

condition (Fig. 2). This means that a certain SP cluster should

appear at least in one EEG channel in the vast majority ($80%) of

subjects for a particular condition, to be included in the repertoire

of that particular condition. Therefore a given repertoire of SP

clusters for a given condition represents a multitude, where

different SP clusters come from the same or different channels of

1-minute (or 20-sec) EEG (Fig. 2). Parameters of dynamic

repertoires of SP clusters were compared across 13 conditions

and 9 studies.

12. Statistics
Correlations between variables were assessed by Spearman

correlations test. Differences in the percent changes between

reference state (resting condition with closed eyes) and other

conditions were assessed by Chi-square test. Statistical significance

was assumed where p,.05.

Results

To study the size, typicality and uniqueness of dynamic

repertoires of SP clusters and the chance likelihood of occurrence

for each SP cluster across normal and various pathological brain

conditions, we will contrast these conditions with a common

reference state – resting condition with closed eyes in healthy subjects,

which is usually defined as a ‘‘baseline’’ of brain activity.

Figure 2. Schematic representation of the formation of repertoire of SP clusters for a given condition. The type (labelled by the
number), duration and the number of SP clusters for each EEG channel are presented. Relative frequency of each SP cluster occurrence was averaged
separately for each EEG channel across all EEGs and all subjects for a given condition. The repertoire of SP clusters for this condition is a multitude of
the types of SP clusters occurred during a given condition. If an SP cluster was found in one or more EEG channels for all EEGs (in average) for a given
condition within a given study then this type of SP cluster was assigned to the repertoire of that particular condition.
doi:10.1371/journal.pone.0087507.g002
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1. Parameters of Dynamic Repertoire of SP Clusters and
the Frequency of each SP Cluster Occurrence during
Resting Condition with Closed Eyes in Healthy Subjects
Figure 3 summarises dynamic repertoires of SP clusters for

resting condition with closed eyes examined in four independent

studies (only healthy subjects from each study were taken in the

analysis). It can be seen that the resting EEG in each study was

characterised by a limited repertoire of SP clusters which ranged

from 9 to 26 types. Note that the number of SP clusters in the

resting condition correlated negatively with age: the higher the

number of SP clusters in the repertoire, the younger the mean age

of subjects (r=20.96, p,.05, Spearman correlations; Fig. 3).

All four repertoires overlapped significantly: only 1 or 2 SP

clusters were unique in the three studies (studies- 1, 5 and 6);

repertoire of SP clusters in study-4 completely overlapped with the

other three repertoires (Fig. 3). Notice that there was no

correlation between the number of EEG channels and the number

of SP clusters in the repertoire (the size of repertoire).

When all four repertoires were taken together, the size (number)

of the overlapping repertoire of SP clusters reached 30 (Fig. 3).

Analysis revealed that almost half (47%) of SP clusters from this

common repertoire occurred in any three or all four studies, 37%

of SP clusters from the common repertoire occurred in any two

studies and only 16% of the SP clusters occurred in any one study.

Thus, this common repertoire is characteristic for all examined

manifestations of closed eyes resting condition EEG in a wide age

range (from 19 to 60 years) in healthy subjects and will serve us as

baseline reference of EEG oscillatory activity.

2. Parameters of Dynamic Repertoires of SP Clusters and
the Frequency of Each SP Cluster Occurrence Across
Diverse Healthy and Pathological Conditions

2.1. Size (number) of the repertoires of SP

clusters. Figure 4 summarises dynamic repertoires of SP

clusters for 13 diverse healthy and pathological conditions: rest

with closed eyes (CE), rest with opened eyes (OE), waiting stage of

the memory task (W), memorising stage of the memory task (M),

keeping-in-mind stage of the memory task (K), retrieval stage of

the memory task (R), benzodiazepine-induced sedation with closed

eyes (B), natural sleep (S), hypnotic rest with opened eyes (Hyp),

interictal rest with closed eyes in patients with generalised epilepsy

(E), opioid addiction rest with closed eyes (O), opioid withdrawal

rest with closed eyes (OW), rest with closed eyes in patients with

major depression (D).

It can be seen that the EEG of each condition was characterised

by limited repertoire of SP clusters which ranged from 13 to 30

types (Fig. 4). The largest repertoire of SP clusters was observed for

resting condition with closed eyes. Progressive increase in cognitive

loading resulted in considerable narrowing (by 13–23%, p,.001)

of correspondent repertoires, reaching the minimum during

memorisation (M) and retention (K) of information (Fig. 5, A).

Additionally, natural (sleep) or induced by hypnosis or benzodi-

azepine alteration of consciousness also resulted in repertoires’

reduction (by 13–17%, p,.02, Fig. 5, B). Finally, all examined

neuropsychopathologic resting conditions demonstrated consider-

ably smaller repertoires of SP clusters (by 17–43%, p,.0000001)

when compared with healthy resting condition (Fig. 5, C). The

smallest repertoire of SP clusters was observed in the depressive

condition. Omitting depressive condition still holds significant

result: reduction of repertoires of SP clusters was by 17–27%

(p,.0004). Note that the more brain systems were predominantly

impaired (according to [96]) the bigger was the size of repertoire of

SP clusters in neuropsychopathologic conditions (r= - 0.95, p,.05,

Spearman correlations; Fig. 5, C).

When compared to resting closed eyes condition the largest

decrease in the size of repertoires of SP clusters was observed

during neuropsychopathologic conditions, moderate decrease was

seen during cognitive loading and smallest for conditions of altered

states of consciousness (Fig. 5).

2.2. Uniqueness/universality of SP clusters. Analysis of

the frequency of each SP cluster occurrence across 13 diverse

conditions covering healthy and pathological states revealed that

(a) 8 SP clusters were universal (observed in more than 11 ($85%)

conditions), (b) 18 SP clusters were unique (observed only in any 1

condition) and (c) 32 SP clusters were optional (observed in 15–77%

of conditions) (Fig. 4). This grouping was identified as following.

Theoretically expected frequency of each SP cluster occurrence

across 13 conditions should be 6.5 (50%). Observed occurrence

frequency of 8 SP clusters across 13 conditions approached a

theoretical value (Fig. 4, SP clusters that occurred in 6 and 7

conditions). Observed occurrence frequency for the rest of SP

clusters was either higher or lower than theoretical one.

Identification of unique SP clusters’ group is obvious: SP cluster

should be observed only in any one condition. For the group of the

optional SP clusters we choose equal number SP clusters (612)

which has higher and lower observed frequency of occurrence

than theoretically expected frequency (considering that at the

lower end it should reach the unique group) (Fig. 4). The

remaining SP clusters at the upper end form the universal group

that included only SP clusters that were observed in more than

85% of conditions (Fig. 4). If our grouping is correct then observed

distribution of the SP clusters into these categories should be

different from a chance distribution. A Chi-square test revealed

that distribution of the SP clusters into these categories represent

statistically significant deviation from a chance distribution

(p,.001).

Analysis of the morphology of SPs separately for unique,

optional and universal SP clusters revealed that SPs of different

morphology dominated in each of these groups (Table 1). Thus,

SPs with 2 and 3 main frequency peaks prevailed in unique SP

clusters (50% for 2 peaks and about 40% for 3 peaks). SPs with 1

and 2 main frequency peaks dominated in optional SP clusters

(31% for 1 peak and 47% for 2 peaks). Finally, SPs with 1 main

frequency peak dominated in universal SP clusters (63%) (Table 1).

2.3. SP cluster types. To estimate which EEG oscillations

(within a broad frequency range of 1–30 Hz) occurred more or less

frequently across groups of conditions, we examined the frequency

of each SP cluster type occurrence (which characterise EEG

oscillations and/or their mixture) (Fig. 6).

Analysis revealed that all 13 conditions were characterised by

the same five EEG oscillations (delta, theta1, theta3, alpha2, and

alpha3) alone or combined with each other as well as polyrhythmic

activity (measured as 8 universal SP clusters) in different EEG

segments, thus exhibiting ‘‘mosaic’’ dynamics (Fig. 6, A).

Polyrhythmic activity (presented by a pattern where peaks occupy

the majority of the frequencies within the studied range) indicates

a mixture of activity of small neuronal subpopulations each with its

own mode [97]. In addition to these five universal EEG

oscillations and polyrhythmic activity, the group of resting

conditions in healthy subjects was characterised by two additional

EEG oscillations: theta2 and alpha1 (Fig. 6, B). The most diverse

combinations of EEG oscillations were in alpha and theta-alpha

frequency bands during resting condition in healthy subjects.

Group of altered states of consciousness and neuropsycho-

pathology was characterised by additional three (beta1, beta2 and

beta3) EEG oscillations besides the five universal EEG oscillations

EEG Oscillatory States across Brain Conditions
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Figure 3. Repertoires of SP clusters in four resting conditions with eyes closed (examined over four studies). (A). Only healthy subjects
from each study were taken into analysis. A sequence of four studies arranged in accordance to the mean age of subjects participated from younger
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(Fig. 6, C). EEG oscillations alone or in combination from theta-

alpha and beta frequency bands were present the most in this

group of conditions.

Discussion

1. Parameters of Dynamic Repertoire of EEG Oscillatory
States and the Frequency of Each Oscillatory State
Occurrence during Resting Condition with Closed Eyes in
Healthy Subjects
We start our analysis by considering the resting condition with

eyes closed in healthy subjects. The resting brain state with eyes

closed in healthy subjects constitutes a reference baseline, relative

to which many cognitive and physiological brain states are usually

considered [98,99].

Analysis of the repertoires of SP clusters for resting conditions

with eyes closed from four experimental studies revealed that

multichannel EEG total variability during multiple realisations of

the resting condition is limited by 30 types of local oscillatory states

in healthy subjects (Fig. 3). Each realisation of the resting condition

was characterised by smaller repertoire of local EEG oscillatory

states: from 9 to 26. Recall that in this study a repertoire of EEG

oscillatory states includes state types found in all EEG channels

during a given condition. The size of the repertoires of EEG

oscillatory states for each EEG channel is ranged in more narrow

limits: from 5 to 16 types for different conditions

[45,56,58,61,62,66,65]. This is consistent with the earlier findings

obtained by authors who used spectral analysis for characterisation

of EEG states within separate EEG channels [40,51]. This can be

interpreted as the brain ‘‘operates’’ via a fixed number of

oscillatory states which are produced by different but constrained

configurations of firing neurons (for the relations between EEG SP

and the actual state of the neurons in the underlying network, see

appendix in [46]). This is in line with previous studies that have

demonstrated that an individual (local) EEG signal is described by

a stable and restricted set of SP types [1,31,40,45,46,51]. Different

authors have reported different number of distant EEG segment

types: from 5 to 35 [1,40,41,45,46,51]. The number of types of

EEG segments depends on (a) the number of EEG channels

analysed, (b) the mean age of subjects’ sample used, (c) the number

of conditions examined and (d) classification criteria used: spectral

power, frequency of the main peaks in the power spectrum, overall

shape of the power spectrum and so on. It is natural that each of

these criteria capturing somewhat different aspects of real

functional ‘‘modes’’ of cortical activity would result in different

number of distant EEG segment types.

The significance of these EEG oscillatory states for resting

condition with eyes closed in healthy subjects was not equal: the

frequency of each of these oscillatory states occurrence for each

studied manifestation of the resting condition varied. Thus, six

(20%) SP clusters from this common repertoire were universal (each

appeared for all resting conditions), suggesting that 6 oscillatory

states with delta-, theta1-, theta2-, alpha2- and alpha3- oscillations

alone or in combination, as well as polyrhythmic activity are the

necessary elements of neurodynamics during each studied

manifestation of resting condition with eyes closed (Fig. 3).

Nineteen (63%) SP clusters from common repertoire were optional

(each appeared for 50–75% of resting conditions), whereas five

(17%) SP clusters were unique – each appeared for only one

manifestation of the resting condition with eyes closed (Fig. 3).

Therefore we could conclude that individual peculiarity of an

EEG for a particular manifestation of resting condition with closed

eyes in healthy subjects is determined by varying proportions of

universal, optional and unique oscillatory states.

The size of these dynamic repertoires of EEG oscillatory states

during resting condition with eyes closed in healthy subjects was

age dependent: it decreased as subjects’ age increased (Fig. 3). This

suggests that EEG phenomenological variability during rest

decreased with age. Similar relationship was found by Garrett

et al. [100]. On the one hand, observed correlation may reflect

age-related changes in the brain. Indeed, after adolescence, a

steady decrease in brain volume occurs, which appears to become

more severe with age [101;102]. Pakkenberg and Gundersen [103]

reported a loss of about 10% of neurons in the neocortex of both

males and females between age 20 and 90. Thalamic volume also

decreases with age, either due to loss or shrinkage of neurons

[104;105]. Additionally, gains for excitatory and inhibitory cortical

interactions decrease until about age 40 [106], whereas the

number of GABAergic synapses increases throughout this period

of life [107]. On the other hand, age-related decrease in variability

of EEG may reflect an increased dominance of refined and

stereotyped psychological patterns in a subject’s behaviour with

age.

Taken together, the presented findings suggest that the resting

condition with eyes closed is very much an active state [31], where

local EEG oscillatory states emerge, persist for some time and then

disappear to be replaced by other oscillatory states within each

EEG channel. The diversity of these states is limited and

functionally heterogeneous. This suggests that there is a limit in

the number of locally accessible oscillatory states available to the

cortex and many different ways in which the microstates (indexed

by the types of SP clusters) can rearrange themselves in each EEG

channel and between the channels, and still produce the same

macrostate – a resting condition. Thus, ongoing brain activity

reflects the poly-operational structure of resting brain activity (for

discussion see [31]) and confirms that the cerebral cortex is

continuously active in wakefulness. This supposition is in line with

the works of Thatcher and John [108], Herscovitch [109], Arieli

et al. [110], Tsodyks et al. [111], Raichle et al. [112], Raichle and

Snyder [99] and others who demonstrated a highly organized

intrinsic functional activity during a resting state i.e., activity which

is not directly related to identifiable sensory or motor events.

Recent support for this view came from Fingelkurts and

Fingelkurts study [113] which presented evidence that the resting

state with eyes closed is characterised by dynamic functioning of

relatively large, but relatively short-lived neuronal assemblies and

certain level of functional connectivity among them.

2. Parameters of Dynamic Repertoires of EEG Oscillatory
States and the Frequency of Each Oscillatory State
Occurrence Across Diverse Healthy and Pathological
Conditions
The common repertoire of EEG oscillatory states for all studied

manifestations of resting condition with eyes closed (across

different age groups) served as a reference state against which all

other conditions were contrasted. This reference condition was

to older age. The list of SP clusters is organised in accordance with the frequency of each SP cluster occurrence across 4 resting conditions, the most
frequent being on the top. CE = closed eyes, n= the number of EEGs for each condition, N1= the number of studies for which a given SP cluster has
been observed, N2= the number of SP clusters in repertoires for each condition, abs = absolute values, st.d. = standard deviation. (B) Scatter plot of
size of SP clusters’ repertoires vs. age is presented.
doi:10.1371/journal.pone.0087507.g003
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Figure 4. Repertoires of SP clusters for 13 diverse conditions (examined over 9 studies). The sequence of conditions was arranged in four
groups: resting conditions, cognitive task with increased loading, altered states of consciousness, and neuropsychopathology. The list of SP clusters is
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normalized for the age factor. Thus, it allows us to compare

different groups in which subjects with different ages (from 19 to

60 years) participated.

2.1. Size of the repertoires of EEG oscillatory states

(indexed by SP clusters). Size of the repertoire of EEG

oscillatory states (expressed as a multitude of SP clusters from the

same and different EEG channels) represents the range of the

probable local states available to the cortex. All phenomenological

manifestations of EEG across 13 diverse conditions which cover

healthy rest, cognitive tasks, altered states of consciousness and

pathological states were described in total by a multitude of 58

types of oscillatory states (measured as the number of SP cluster’s

types, Fig. 4). EEG in each and every condition was characterised

by a limited repertoire of oscillatory states which ranged from 13

(rest during depression) to 30 (healthy rest) SP cluster types (Fig. 4).

The largest decrease in the repertoires size of oscillatory states was

observed during neuropsychopathologic conditions, a moderate

decrease was during cognitive loading and smallest – during

altered states of consciousness conditions (Fig. 5). The following is

a separate consideration of each of the group conditions.

A progressive increase in cognitive loading [114] resulted in

considerable narrowing of correspondent repertoires reaching a

minimum during information memorisation (M) and retention (K)

(Fig. 5, A). This is not surprising: closed eyes resting state is a state

of relaxation and non-focused attention where cortical processes

and associated internal mental activity are not determined by

external stimuli but are driven by free floating associations, mental

imagery, planning, etc, and random shifts from one mental object

or theme to another are present. Such internal mental activity

(top-down processing) was probably reflected in the wide

repertoire of EEG oscillatory states. Opening the eyes resulting

in nonspecific activation caused by basic sensory input was

reflected by a decreased number of accessible local oscillatory

states available to the cortex. This can be explained that only a

subset of resting oscillatory states is needed to aid the processing of

visual information on the one hand [115] and provide general task

demands and attentional processes on the other hand [116,117].

The following ‘‘waiting’’ (W) condition which is characterized by

mobilization of resources with alertness, arousal and readiness to

process information was associated with further reduction in the

repertoire size of oscillatory states. Memorizing (M) and retention

(K) conditions being conditions with highest focused attention

were characterized by the smallest number of accessible oscillatory

states available to the cortex. Whereas the retrieval (R) condition

(where several recognition and comparison operations are

involved) was characterized by a widening of the size of repertoire

of oscillatory states when compared to previous conditions.

Altered states of consciousness (natural sleep, hypnosis and

benzodiazepine-induced sedation) were also characterised by a

reduction in repertoire size of oscillatory states (Fig. 5, B), thus

suggesting less diverse and less variable EEG (both temporally and

spatially) when compared with the healthy resting condition with

closed eyes. This can be interpreted as a decrease in the number of

information processing modes, thus suggesting a reduction in brain

information processing [118] with a larger reduction for artificial-

ly-induced sedation conditions.

Finally, all examined neuropsychopathologic resting conditions

demonstrated considerably smaller repertoires of EEG oscillatory

states when compared with healthy resting condition (Fig. 5, C).

Among neuropsychopathologic resting conditions the smallest

repertoire of oscillatory states was observed in the depressive (D)

condition and the largest in the ‘‘opioid withdrawal’’ (OW)

condition. It can be suggested that the severity of neuropsycho-

pathology is associated with the degree to which repertoire size of

EEG oscillatory states decreases. However, the number of

predominantly impaired brain systems for each condition [96]

correlated negatively with the repertoire size of oscillatory states

(Fig. 5, C). Therefore, more studies are needed to clarify the

relationship between repertoire size of oscillatory states, number of

the predominantly impaired brain systems and the degree of

neuropsychopathology. Considerable decrease in EEG variability

for neuropsychopathologic conditions corroborates with a well

known fact that a loss of variability in the majority of physiological

measures is associated with an increased pathology [119–121]. It

seems that none of the studied neuropsychopathologic condition

could reach a proper (for the healthy brain) resting state. As a

result, such a system is less able to cope with the demands of a

constantly changing environment. Decreased repertoires size of

EEG oscillatory states during neuropsychopathologic conditions

may reflect alteration in neuronal assemblies functioning. This

suggestion is supported by an earlier study which demonstrated

that the size, stability and functional life-span of neuronal

assemblies were increased and reached ‘‘true’’ pathological values

in depression, opioid abuse and abstinence pathological conditions

when compared with the healthy reference functional state [113].

By ‘‘true’’ pathological values we mean the values which are outside

the boundaries of variability of healthy resting state with closed

eyes. These enlarged, stable and long-lived neuronal assemblies in

the mentioned neuropsychopathologic conditions can be inter-

preted partially in terms of persistent and recurrent presence of the

same train of limited thoughts: negative thoughts in depression

that maintain depressive affect and cognition [122] and drug-

related thoughts that lead addicts to drug-seeking and drug-taking

behavior [123] in opioid abuse and abstinence. One may speculate

that decreased repertoires size of EEG oscillatory states during

neuropsychopathologic conditions reflect a situation where both

neural and thought dynamics getting ‘‘stuck’’ in so-called attractor

states.

2.2. Uniqueness and universality of EEG oscillatory states

(indexed by SP clusters). Analysis of the frequency of each

oscillatory state occurrence across 13 diverse conditions covering

healthy and pathological states revealed that (a) eight (14%) EEG

oscillatory states were universal (observed in more than eleven

($84%) conditions), (b) eighteen (31%) EEG oscillatory states were

unique (observed once in any one condition) and (c) thirty-two

(55%) EEG oscillatory states were optional (observed in 15–77% of

conditions) (Fig. 3). The number of universal EEG oscillatory

states observed in this study (8 types) is within the range observed

organised according to the frequency of each SP cluster occurrence across 13 conditions, the most frequent being on the top. CE= closed eyes,
OE =open eyes, Comm=common for four resting conditions in healthy subjects, W=waiting period of the memory task in healthy subjects,
M=memorizing period of the memory task in healthy subjects, K = keeping-in-mind period of the memory task in healthy subjects, R = retrieval
period of the memory task in healthy subjects, B = benzodiazepine-induced sedation in healthy subjects, S = natural sleep in healthy subjects,
Hyp =hypnosis in healthy subject, E = interictal rest in medication-free patients with generalized epilepsy, O= rest in opioid-dependent patients,
OW= rest in opioid-withdrawal patients, D= rest in medication-free patients with major depression, n= the number of EEGs for each condition,
N1= the number of conditions for which a given SP cluster has been observed, N2= the number of SP clusters in repertoires for each condition,
abs = absolute values.
doi:10.1371/journal.pone.0087507.g004
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Figure 5. Repertoires size of SP clusters for different conditions. The closed eyes rest condition in healthy subjects is taken as a reference
functional state and it is indicated on the figure as a vertical line. The sequence of conditions is arranged in accordance to (A) cognitive loading, the
maximum loading being on the right; (B) the level of consciousness alteration, the maximum alteration being on the left; and (C) the number of the
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earlier: from 6 [40] to 11 [45] types of universal local EEG

oscillatory states.

Perhaps universal EEG oscillatory states reflect the general

properties and necessary oscillatory elements of neurodynamics

that are independent of the brain’s functional state, cognitive task,

health or neuropsychopathology. It is very likely that universal

EEG oscillatory states are determined genetically. Indeed, the

heritability of these EEG oscillations is estimated to be between

80% and 90% [124]; for a review and meta-analysis see [125]) and

these EEG oscillations share a common genetic source ([126]; see

also [127]). This common genetic source for EEG oscillations may

reside in the common influences on the cerebral rhythm

generators or in genes directly involved in the bioelectric basis of

the EEG signal itself [126] by influencing the number of pyramidal

cells, amount of dendritic connections and their orientation with

respect to the scalp [128]. Additionally, it was reported that the

ratio of polyrhythmic activity in the EEG is also strongly

influenced by genetic factors [129].

Unique EEG oscillatory states are most likely related to a few

limited functions which are necessary for a given condition.

Therefore, the individual peculiarity of an EEG within any of its

manifestations is determined by varying proportions of universal,

optional and unique oscillatory states [40]. Such structural-

functional organisation of brain activity, where the proportion of

universal, optional and unique EEG oscillatory states is dynamic,

meets the complex computational and communicational demands

of the brain by flexibly modifying this proportion in a wide variety

of ways.

Considering extensive data on how SP morphology depends on

neurophysiologic parameters and nonlinear measures ([29,97,130–

135]; to mention just a few), our data on morphology of SP clusters

can be interpreted in terms of states of the underlying neuronal

assemblies. Analysis of the morphology of SPs clusters separately

for unique, optional and universal SP clusters (Table 1) revealed

that unique EEG oscillatory states were generated mostly by two

(in 50%) or three (in 40%) neuronal ensembles with resonant

ordered behaviour within each individual ensemble [97,130,133].

Optional EEG oscillatory states were produced mostly by one (in

31%) and two (in 47%) neuronal ensembles, whereas universal

EEG oscillatory states were generated mostly (in 63%) by a single

neuronal ensemble [133,134], which is is characterised by

resonant ordered behaviour with low entropy [97,130,132] in a

short-term temporal scale.

2.3. Type of EEG oscillatory states (indexed by SP cluster

types). Nowadays a large body of knowledge has accumulated

on functional significance of EEG oscillations (for the review see

[47]; see also ref. list of this article). Considering that different

EEG oscillations reflect functionally different components of

information processing acting on various temporal scales

[136,137] it is possible to map EEG oscillations onto mental

and/or behaviour states [138].

Analysis of EEG oscillations which contributed to EEG

oscillatory states within groups of conditions revealed that

universal EEG oscillatory states were characterised by delta,

theta1, theta3, alpha2, and alpha3 EEG oscillations alone or in

combination and by polyrhythmic activity in different EEG

segments, thus exhibiting a ‘‘mosaic’’ dynamics (Fig. 6, A). All

these EEG oscillations have a number of universal functions,

which may explain participation of these oscillations in the

universal EEG oscillatory states: (a) delta oscillations are associated

with states oriented to the acquisition of biologically important

goals such as physical maintenance, survival, dominance and

mating [139,140], (b) theta oscillations are expected to be

associated with emotional regulation [141–143] and episodic

memory demands [115,144,145], (c) alpha oscillations are

involved in the organization of conscious interactions with the

environment [140,146] and associated with spontaneous self-

referential thoughts [147] and (d) polyrhythmic activity is

necessary to maintain a high level of activity in neuronal networks

for sustained periods of time [148].

In addition to oscillations of the universal EEG oscillatory states,

the group of resting conditions in healthy subjects was char-

acterised by two additional EEG oscillations: theta2 and alpha1
(Fig. 6, B). The most diverse combinations of EEG oscillations

were in the alpha and theta-alpha frequency bands for resting

conditions in healthy subjects. A number of specific functions of all

these EEG oscillations which may be useful for resting conditions,

where cortical processes and associated internal mental activity are

predominantly impaired brain systems (according to [96]), the maximum number being on the left. CE = closed eyes, OE= open eyes, W=waiting
period of the memory task in healthy subjects, M=memorizing period of the memory task in healthy subjects, K = keeping-in-mind period of the
memory task in healthy subjects, R = retrieval period of the memory task in healthy subjects, S = natural sleep in healthy subjects, Hyp =hypnosis in
healthy subject, B =benzodiazepine-induced sedation in healthy subjects, OW= rest in opioid-withdrawal patients, E = interictal rest in medication-
free patients with generalized epilepsy, O = rest in opioid-dependent patients, D= rest in medication-free patients with major depression.
doi:10.1371/journal.pone.0087507.g005

Table 1. The number of clusters of spectral patterns with different morphology among (a) unique SP clusters (observed in any 1
(8%) condition), (b) optional SP clusters (observed in 15–77% of conditions) and (c) universal SP clusters (observed in more than 11
($85%) conditions).

unique SP clusters optional SP clusters universal SP clusters

SP morphology abs % abs % abs %

one dominant peak 2 11 10 31 5 62.5

two dominant peaks 9 50 15 47 2 25

three dominant peaks 7 39 5 16 – –

four dominant peaks – – 2 6 – –

Polyrhythmic – – – – 1 12.5

Total 18 = 100% 32= 100% 8= 100%

doi:10.1371/journal.pone.0087507.t001
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not determined by external stimuli, but driven by free floating

associations, mental imagery, planning, etc [117,149,150], are the

following: (a) delta oscillations are related to states which require

attention to internal processing [151], (b) theta oscillations reflect

control processes that may operate under top-down control or in a

default-like mode [152] and may serve as a response controlling

function [137], (c) alpha1 oscillations are related to general non-

focused attentional demands [115], whereas alpha2 oscillations

may facilitate association mechanisms in the brain [153] and

participate in instantaneous recognition of environmental patterns

by means of matching them with categorized knowledge stored in

semantic memory [139,152], (d) polyrhythmic activity represent-

ing stochastic resonances are an important mechanism by which

very small signals can be amplified and emerge from the random

noise of physiological oscillations [154].

The group of altered states of consciousness and neuropsycho-

pathologic conditions was characterised by three more EEG

oscillations (beta1, beta2 and beta3) in addition to oscillations of the

universal EEG oscillatory states (Fig. 6, C). EEG oscillations alone

or in combination from theta-alpha and beta frequency bands

were the most prominent in this group of conditions. The

following specific functions of all observed EEG oscillations may

Figure 6. Clusters of spectral patterns. List A: clusters of spectral patterns which are universal for all studied conditions. List B: clusters of spectral
patterns which are observed mostly in resting conditions. List C: clusters of spectral patterns which are observed mostly in altered states of
consciousness and neuropsychopathology. ‘‘–’’ = none of the SP clusters in a given frequency range was observed.
doi:10.1371/journal.pone.0087507.g006
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explain their dominance in EEG oscillatory states during altered

states of consciousness and neuropsychopathology: (a) delta

oscillations have been related to increased inhibition such as sleep

or states requiring attention to internal processing in healthy

subjects [151] or to opioid addiction in opioid-abusing individuals

[155,156], (b) theta oscillations are associated with a hypnagogic

state in which individuals are drowsy and have a marked decrease

in awareness of their environment [157,158] or are associated with

impulsive behaviour [139,140], (c) alpha2 and alpha3 oscillations

suggest an increase in alertness and can be interpreted as reflecting

increased excitation of neuronal ensembles on the one hand and

higher readiness to respond to stimuli (anxiety) on the other hand

[159,160], (d) beta oscillations are considered as an index of a

higher level of cortical activation and irritation [96,159–161] and

related to dysfunction in GABAA receptor genes which underlies

the imbalance between excitation–inhibition (hyperexcitability)

and is involved in the predisposition to develop pathological

dependencies and other disinhibition disorders [161,162], (e)

polyrhythmic activity at elevated levels is a sign of pathological

processes [48,163]; the fact that the frequency spectrum becomes

increasingly peaked as the system approaches a change of state

[164,165] suggests that the amount of polyrhythmic activity would

increase while approaching an epileptic seizure and that a higher

percentage of polyrhythmic activity is likely to increase the

probability of a seizure [58].

Notice that there was no single SP type which would have a

dominant narrow peak in a beta frequency band in resting

conditions and studied cognitive tasks in healthy subjects (Fig. 6, A,

B). This does not mean that these conditions do not have beta

oscillations. However it means that during each observation (2 sec)

beta oscillations are not dominant in relation to delta, theta and

alpha, suggesting that independent beta rhythm is a less probable

oscillation during these conditions. This is consistent with the work

of Simon [166] who founds beta frequencies in only 22% of

normal adults. Well known beta activity visible in averaged power

spectrum is most likely a result of the contribution of the averaging

of the polyrhythmic SPs which have power peaks at beta frequency

band along with other peaks at other frequency bands. Addition-

ally, beta activity in resting conditions and cognitive tasks in

healthy subjects is characterised often by non-dominant very

broadband peak (spectral power peaks at other frequency bands

are dominant) rather than a well-defined narrow peak. In contrast,

EEG from neuropathological conditions and altered states of

consciousness is characterized by diverse SP types with dominant

well-defined narrow peaks in beta band (Fig. 6, C).

Taking the aforementioned results and literature data together it

is possible to suggest that each EEG oscillation is related to

multiple functions (universal and specific) and a given function is

often manifested by means of multiple EEG oscillations [167,168]

which are organised in a particular proportion of universal,

optional and unique EEG oscillatory states. Thus, EEG oscilla-

tions from the same frequency band may express different

functions depending on conditions they involved in. This seems

biologically plausible: EEG oscillatory functional diversity creates

a rich repertoire of brain activity, which can meet the complex

computational and communicational demands of the brain. By

preventing neural dynamics from getting ‘‘stuck’’ in so-called

attractor states, neural diversity may facilitate quick responses to

environmental demands in a wide variety of ways, and with less

effort than a system where all states are identical.

Percent ratio of each oscillatory type of EEG states for each

EEG channel during each studied condition together with

functional interpretation is beyond the scope of this study and

can be found in correspondent studies (see references provided for

each used study above).

Before coming to the final conclusions, methodological question

regarding the influence of reference electrode on SP shape should

be raised. One may assume that some of the obtained results may

be affected by the fact that in some studies linked-ears were used as

EEG reference and in others nose was used as EEG reference.

However it is unlikely since analysis of local signals for EEG

(reference-dependent technique) and MEG (reference-free tech-

nique) registered simultaneously revealed the same classes of SP

types, very similar percent ratio of these classes and very similar

temporal stabilization of SPs between EEG and MEG [61]. This is

due to fact that reference choice influences magnitude and

distribution of power spectra but not the shape of SP [169,170],

which is essential for our analysis.

Limitation of the Study-8 that presents hypnosis condition

should be mentioned. In this study only one virtuoso subject (very

highly susceptible individual) was participated (even though many

EEGs were recorded), therefore results from this study should be

considered with caution. However there are several advantages of

this single case study: (a) The typical way in the field to

operationalize hypnosis is to use scales which measure so-called

hypnotic susceptibility. The responses measured or assessed by

most of these scales concern overt behaviour rather than subjective

experiences. In such a way the search for neurophysiological

correlates is performed in the heterogeneous group of subjects,

which have an identical score obtained on a given behavioural

scale, but different underlying neuropsychophysiological processes.

Therefore a single case study is free from such group averaging; (b)

The usage of virtuoso permitted us to study hypnosis state in its

pure form free from the influences of standard experimental

induction procedures and suggestions in particular contents of

consciousness (See Details in [66]). Therefore the ‘hypnotic’

phenomenon in the Study-8 is manifested in it clearest form and is

not easily confused with any other phenomena, such as simple

compliance and faking, or with relaxation suggestions and

hypnotic hallucinations, or with ‘‘virtual’’ phenomena resulted

from group averaging. Additionally, oscillatory content of this

virtuoso’s EEG was the same as reported for other virtuosos.

Taking together, the abovementioned advantages and typicality of

spectral description of EEG for virtuosos justify presentation of

these data.

Conclusions

This is the first EEG study that covers so diverse and broad

range of conditions using the same methodological and conceptual

framework in order to quantify the dynamic repertoires and

oscillatory types of local EEG states. This methodological

approach enabled us to reveal peculiarities and generalities of

EEG oscillatory states across a multitude of different conditions

and tasks which cannot be seen within any one study:

(a) The observed results demonstrate that brain activity (either

within individual EEG channel or in all EEG channels taken

together) consists of a limited repertoire of EEG oscillatory

states in any of the 13 examined conditions; and this

repertoire is ranges from 13 (rest during depression) to 30

(healthy rest) SP cluster types. This suggests that there is a

limit in the number of accessible oscillatory microstates

available to the cortex (either locally or globally) and many

different ways in which these microstates can rearrange

themselves and still produce the same macrostate. Even

resting condition with eyes closed is very much an active

state with the poly-operational structure, where EEG oscillatory

EEG Oscillatory States across Brain Conditions

PLOS ONE | www.plosone.org 16 February 2014 | Volume 9 | Issue 2 | e87507



states emerge, persist for some time and then disappear to be

replaced by other oscillatory states within each EEG

channel.

(b) The repertoire’s size of oscillatory states was associated with

cognitive or vigilance states changes or neuropsychopatho-

logic conditions. Thus, the largest size of the repertoires of

oscillatory states was observed for altered states of con-

sciousness, the medium size was during cognitive loading

states and the smallest size was found for neuropsycho-

pathologic conditions. At the same time, all these conditions

were characterized by smaller size of the repertoires of

oscillatory states compared to the baseline resting condition

with closed eyes.

(c) Not all EEG oscillatory states occur with the same frequency

– some of them seem to be ‘‘preferred’’ within and across

conditions. The existence of universal, optional and unique EEG

oscillatory states across 13 diverse conditions was observed.

It is very likely that universal EEG oscillatory states are

associated with functions which are invariant and necessary

for any condition (acquisition of biologically important goals

such as physical maintenance, survival, dominance, mating,

emotional regulation and organization of conscious interac-

tions with the environment) and therefore they should be

determined genetically. On the contrary, unique EEG

oscillatory states are likely to be related to more specific

functions which manifest themselves only under certain

conditions. Therefore, individual peculiarity of an EEG

within any of its manifestations is determined by varying

proportions of universal, optional and unique oscillatory

states.

(d) The dynamic repertoires and oscillatory types of local EEG

states identified in the present study possess most likely

distinct trait-like qualities. Using the same methodological

approach it was demonstrated earlier [46] that the size of

repertoires of EEG states, oscillatory types of EEG states and

there percent ratio (i) were highly stable across all one-min

EEGs for each subject during resting conditions and during

memory task and (ii) demonstrated very high test–retest

reliability for resting conditions and the memory task.

Moreover, the reliability values demonstrated regular

changes in accordance with the changes of functional brain

state and stages of the memory task, thus exhibiting

functional relevance [46]. These findings might be the

manifestation of intra-individual stability of neurodynamics

and underlying regulatory mechanisms. Additionally, the

size of repertoires of EEG states, oscillatory types of EEG

states and there percent ratio were typical for each of the

examined conditions (for similar view see [40]).

(e) Joint analysis of the results obtained in this study and

previously published data suggested that unique EEG

oscillatory states were generated by mostly two or three

neuronal ensembles with resonant ordered behaviour within

each individual ensemble. Optional EEG oscillatory states

were produced by mostly one or two neuronal ensembles,

whereas universal EEG oscillatory states were generated by

mostly a single neuronal ensemble which was characterised

by resonant ordered behaviour with low entropy.

(f) Additionally it was proposed that EEG oscillations which

constituted EEG oscillatory states are characteristic for

different groups of conditions according to functional

significance of these EEG oscillations.

In future research it will be important to establish the

repertoires of mental and cognitive operations which accompany

the types of observed EEG oscillatory states.
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Appendix S1 

 

Relation of local short-term SPs and local EEG oscillatory states 

 

The usage of local short-term SPs for characterisation of local EEG oscillatory states is 

justified due to the following reasoning: 

 

(i) A single EEG spectrum reflects the coordinated activity of tens and hundreds of 

thousands of neurons at a particular point in time [1]. However, there is no simple (one-

to-one) relation between a power spectrum computed from short epochs of ongoing EEG 

and the actual state of the neurons in the underlying network: many different 

configurations of firing neurons can give rise to a particular short-term SP (many-to-one 

relation). At the same time, the same configuration of firing neurons cannot give rise to 

two (or more) different short-term spectra. Thus, two different short-term power spectra 

most likely are originated from two different configurations of firing neurons [2]. 

Consequently, short-term SP characterises/reflects a particular class of neurons’ 

activities, where each of the activities has something common with the others within the 

class (one-class–to–one relation). Moreover, two classes of neurons’ activity do not 

overlap (otherwise the same configuration of firing neurons could give rise to two or 

more different short-term spectra). Thus, a given type of short-term SP may be 

considered as a single event (which reflects a particular class of neurons’ activity) in 

EEG phenomenology from viewpoint of its spectral characteristics [3]. In this context it 

can be suggested that the SPs within each class are generated by similar neurodynamics 

class as well as driving force [2]. SPs from different classes, however, are expected to 

have different driving forces and therefore generated by different neurodynamics classes. 

Thus, each perceptual, cognitive, or mental operation is thought to constitute a single 

distinguishable neurophysiological state with a distinct and reliable SP type [4-7]. 

Therefore, the abrupt transition from one SP type to another reflects a change in the 

transient neuronal assembly state or changes in the activity of the two or more neuronal 

assemblies [8]. In this case, the frequency of appearance of each SP type reflects the 

probability for the occurrence of particular neuronal dynamics class, which constitute a 

dynamic repertoire of brain activity under a particular functional state or condition. 

 



(ii)  It is often claimed that volume conduction is the main obstacle in interpreting local EEG 

data: each EEG electrode registers activity from many sources – in other words, locally 

registered EEG activity is a result from a mixture of volume conduction effect and 

genuine local source activity. However, it is often ignored that only some sources 

contribute to local EEG considerably and others insignificantly. What is the contribution 

of volume conduction effect in this context? 

Firstly, volume conduction effect is distance dependent: the larger the distance of the 

recording electrode from the current source, the less informative the measured potential 

becomes about the events occurring at the location(s) of the source(s) [9]. Secondly, 

superficial sources contribute a strong potential that is restricted in extent to nearby 

electrodes on the scalp, and are thus the most likely sources to be accurately localized 

with scalp recordings [10]. It has been estimated that one electrode integrates cortical 

input under a scalp surface of the order of 6 cm2 [11-14]. Therefore, at distances greater 

than 4 cm volume conduction effect is predicted to be very small [14]. 

Such prediction is supported by experimental findings which suggested the existence 

of statistical heterogeneity (anisotropy) of electromagnetic field in regard to the 

processes in local LFP [15] and local EEGs [16-20]. It was demonstrated that such 

electromagnetic heterogeneity relates to large-scale morpho-functional organization of 

the cortex:  

(a)  Covariance between neighboring electrodes across cortex functional boundaries 

(e.g., parietal to temporal areas) is much smaller than covariance within functional 

regions (e.g., left parietal to midline parietal area), indicating that multiple distinct 

functional areas are assessed by topographic EEG [21; 22]. This morpho-functional 

heterogeneity of EEG was also confirmed in independent study in which the spatial 

heterogeneity of scalp-recorded EEG synchronicity was measured along longitudinal 

(the anterior-to-posterior and posterior-to-anterior directions) and transversal (right-

to-left anterior and right-to-left posterior directions) electrode arrays with scalp 

electrodes equally spaced in all these arrays [17]. Data from actual EEG was 

compared with so-called “surrogate” EEG in which a mixing of actual local EEG 

recordings was done in such a way that each local recording was registered in a 

different time so that the natural time relations between all local EEG recordings in 

such EEG were completely destroyed, however, the number and the sequence of 

segments within each local recording remained the same as in the actual EEG. For 

longitudinal electrode arrays, despite the fact that all testing pairs of EEG electrodes 



had the same interelectrode distance, synchronicity index exhibited the notable 

topological landscape: it significantly decreased in locations of EEG electrode pairs 

on the head which overlay cortex functional boundaries [17]. This data clearly 

indicate that at the boundaries of well-outlined functional cortical areas the temporal 

consistency of segmental architectonics of electrical field becomes weak. 

Additionally (i) the relationship between synchronicity index and interelectrode 

distance was not monotonous for both longitudinal electrode arrays: step-wise 

dependency was observed and (ii) forward (posterior-to-anterior) and backward 

(anterior-to-posterior) dependences of synchronicity index from the interelectrode 

distance were significantly differing between each other [16, 17]. These results 

suggest that volume conduction role here is insignificant. For transversal electrode 

arrays it was demonstrated that (i) anterior and posterior cortex areas had opposite 

tendencies in the dynamics of synchronicity index (notice that anterior and posterior 

cortex areas have different morpho-functional organisation) and (ii) maximal 

synchronicity index values in the posterior cortical areas were obtained for 

homological lateral EEG locations (which have similar morpho-functional 

organisation) in spite of the largest interelectrode distance in the electrode array [16, 

17];  

(b)  The probabilities of firing of neurons observed singly and in small groups 

simultaneously are in close statistical relationship to the EEG recorded in the near 

vicinity [23, 24]. Therefore local EEG can provide an experimental basis for 

estimating the local mean field of contributory neurons;  

(c)  The accuracy of topographic EEG mapping for determining local (immediately 

under the recording electrode) brain activity was demonstrated [184, 185]: there are 

statistically significant linear relationships between local EEG power and cerebral 

perfusion underlying the electrode in the majority of frequency bands [25, 26]. 

These findings are in line with earlier study of Inouye et al. [27], where the authors 

demonstrated that endogenous EEG activity originated from underlying cortex area 

contributes the most to the spectral power measured from the given EEG electrode. 

Whereas exogenous EEG activities originated from the other cortical areas 

contribute to spectral power of the same EEG electrode insignificantly. Thus, 

together described works suggest that topographic EEG mapping can accurately 

reflect local brain function and that it is comparable to other topographic methods; 



(d)  Each local EEG or small group of local EEGs are characterised by a relatively 

specific set of SP types [28] presumably due to their different degree of involvement 

in the condition or the task; 

(e)  The same type of SP is usually observed simultaneously within the same 

observation in two functionally homologous EEG channels: for example O1-O2 

[29], thus suggesting functional topology of SP types rather than volume conduction 

effect; 

(f)  Cortex areas separated by distances exceeding the diameters of ‘wave packets’ have 

differing wave forms and therefore different SP types [30, 31]. The coordinated 

activity manifests a ‘wave packet’ that requires synchronization of a shared carrier 

wave of the outputs of a large number of neurons over the area [30, 31]; 

(g)  Topographically specific modulation of local EEG rhythms by direct cortical 

stimulation via TMS in TMS–EEG studies have been demonstrated [32-35]. Such 

TMS-induced entrainment of local brain oscillations due to direct interaction with 

the underlying local generator revealed causal relations between local EEG 

oscillations and underlying local generator;  

(h)  Compared to the EEG, the MEG is very little affected by the type and location of 

tissue surrounding the generator, and especially that of tissue lying between the 

generator and the sensor [36]. Additionally, the MEG is much more directly related 

to the intracranial currents and is therefore less sensitive to the details of the skull 

conductivity [37]. All these minimize volume conduction effect in MEG [38]. 

Analysis of local signals for EEG and MEG registered simultaneously revealed the 

same classes of SP types and very similar percent ratio of these classes and very 

similar temporary stabilization of SPs between EEG and MEG [39]. These results 

suggest that volume conduction effect on SP analysis based on power spectra shape 

is insignificant at least for 64-channel EEG. 

 

There could be several reasons for these experimental results: 

(a)  as the spatial resolution of EEG has been estimated to be approximately 2 cm [40] 

to 5 cm [14, 41] with an electrode spacing of approximately 7 cm as in the 10/20 

System (used in the majority of EEG studies) volume conduction effect becomes 

less likely; 

(b)  the spatial damping is very high, and thus global resonant modes play no significant 

part in the generation of wave activity [42; 43]; 



(c)  volume conduction does not spread all forms of activity [15]; 

(d)  spread of activity in the cortex is not uniform in all directions as it follows from 

measurements of tissue resistance [44], as well as from measurements of spread of 

activity parallel and perpendicular to the surface by means of microelectrode arrays 

[45, 46]; 

(e)  volume conduction in tissues overlying the cortex is found to affect the spectrum 

significantly only above about 25-30 Hz [47]. Note that most of the physiological 

rhythms and approximately 98% of spectral power lies below that limit [48], and has 

the highest signal-to-noise ratio; 

(f) the conductivity values of the tissue compartments of the head (white-matter, gray-

matter, CSF, skull, and scalp) are not well-known, so that even an exact geometric 

model of the head is still only an approximate volume conduction model of the head 

[173]. Additionally, volume conduction models focus at physical and anatomical 

constrains but do not take into consideration physiological data, e.g. the activity 

(state) of cortex areas. However, macroscopic measurements in cortex revealed a 

frequency dependence of electrical parameters (the conductivity and permittivity) 

[49]. The extracellular medium is reactive in the sense that it reacts to the electric 

field by polarization effects [50]. Electric polarization influences the frequency-

dependent electric properties of the tissue what allows the electrical parameters (the 

conductivity and permittivity) to depend on frequency, as demonstrated by 

macroscopic measurements [49, 51, 52]. Electric polarization is a prominent type of 

reaction of the extracellular medium to the electric field. In particular, the ionic 

charges accumulated over the surface of cells will migrate and polarize the cell 

under the action of the electric field [50]. This surface polarization phenomena can 

have important effects on the propagation of local field potentials [53]. Important, 

the electrical field produced by neural activity can influence it back: studies have 

found that (i) extremely weak fields (<0.5 mV/mm) are capable of significantly 

modulating activity at the network and single cell level, (ii) endogenous fields are 

involved in generating and maintaining neural oscillations and (iii) functional field 

effect interactions in the brain are shaped by the temporal dynamics of neural 

activity especially when relatively homogeneous populations of neurons are 

synchronously active (for the review see [54], see also [55]). 

 



Considering that all activities (influences) from multiple primary sources are not just 

mixed, summed or averaged in a given cortex area, but are rather integrated within the 

current state (activity) of the given area [56, 57], the local EEG registered from that area is 

considered to represent a functional source, which is defined as the part or parts of the brain 

that contribute to the activity recorded at a single sensor [58, 59]. A functional source is an 

operational concept that does not have to coincide with a well-defined anatomical part of the 

brain, and is neutral with respect to the problems of localization of primary source and 

volume conduction [58, 59]. 

Considering the aforementioned findings one may suggest that local EEG short-term 

SPs are mainly determined by underlying neurodynamic (functional state) and type of SPs 

reflects mainly large-scale morpho-functional organization of the cortex rather than the effect 

of volume conduction at least for 10/20 System (used in the majority of EEG studies) which 

measures the main cortex lobes. 
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