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Abstract 
 
The discrepancy between syntax and semantics is a painstaking issue that hinders a better comprehension of 
the underlying neuronal processes in the human brain.  In order to tackle the issue, we at first describe a striking 
correlation between Wittgenstein’s Tractatus, that assesses the syntactic relationships between language and 
world, and Perlovsky’s joint language-cognitive computational model, that assesses the semantic relationships 
between emotions and “knowledge instinct”. Once we have established a correlation between a purely logical 
approach to the language and computable psychological activities, we aim to find the neural correlates of 
syntax and semantics in the human brain.  Starting from topological arguments, we suggest that the semantic 
properties of a proposition are processed at a level that is higher dimensional than the functional level used by 
the brain for syntactical properties. In a fully reversible process, the syntactic elements embedded in Broca’s 
area project into multiple scattered semantic cortical zones. The presence of higher functional dimensions gives 
rise to the increase in informational content that takes place in semantic expressions.  Therefore, diverse 
features of human language and cognitive world can be assessed in terms of both the logic armor described by 
the Tractatus, and the neurocomputational techniques at hand.  One of our motivations is to build a neuro-
computational framework able to provide a feasible explanation for brain’s semantic processing, in preparation 
for novel computers with nodes built into higher dimensions.    
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INTRODUCTION: TROUBLES WITH SEMANTICS 

 

Syntax assesses the relationships among the elements of linguistic expressions (Carnie, 2006): a property 

of the proposition is syntactic, provided it depends only on the symbols. Syntax is akin to grammar, which also 

includes phonology and orthography, such as the sounds and spellings of words (Martinich, 1996). Also, syntax 

refers to the presentation of symbols in a sequence that is valid as based on correctness of designated true/false 

values (Béziau, 2010). In turn, semantics assesses the relationships between expressions and extra-linguistic 

truths (Nerbonne, 1996). A property of the assertion is semantic, provided it depends only on the meaning.  
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Semantics stands also for the logical “information flow” of linguistic expressions, such as in a sequence of 

arguments (Cruse, 2004). The problem is that syntactic properties are verifiable by computerized algorithms, 

while semantic properties are not, because the latter are based on the non-physicalist notion of truth. The issue 

of the unrelatability of syntax and semantics was first raised by Ludwig Wittgenstein.  Indeed, the triumph of 

syntax depicted his seminal Tractatus Logico-Philosophicus (Wittgenstein, 1921) turned out to be incapable 

to solve the difficult logical and philosophical problems of syntactic versus semantics. That’s why the so called 

“second” Wittgenstein (1953) rejected the philosophical scenario depicted in his own book and introduced the 

(almost) opposite semantic theory of “linguistic jokes”. The issue was further complicated by the 

incompleteness theorems (Gödel, 1931) that demonstrated how, if one is limited to syntactic approaches, she 

is not capable to obtain truths. This means that, given a group of arithmetical axioms, there is always a true 

arithmetic proposition that cannot be demonstrated starting from the axioms, if we admit just syntactic methods 

(Segre, 1994; Mancosu, 1998). Hence, a paradox occurs: syntactic methods are inadequate to understand the 

complete properties of the same model that is easily understandable through semantics. This leads us to 

neuroscience and neurocomputation: despite the human thought is effortlessly able to grasp the semantic notion 

of truth, such non-physicalist truth cannot be verified by computers. Therefore, a) if unquestioned and 

consistent syntactic methods are used, then all truths cannot be proved; b) if the uncertain semantic models 

endowed in our brain are used, then all arithmetic truths possibly could be known, but the correctness of such 

models is ambiguous. 

The challenge here is: could the pure logical and syntactic content described by the Tractatus be useful in 

the current neuroscientific debate? How do logical limitations look like, contemplated through the lenses of 

the neurocomputational models at hand? Is it feasible to achieve a computational implementation of the syntax, 

in order to make the Tractatus’ tenets mathematically assessable and describable in semantic terms? Could 

computational syntax and brain semantics be treated through mathematical tools able to remove combinatorial 

complexity? 

Herein we show how a semantic theory that links language and cognition, i.e., Perlovsky’s joint language-

cognitive model (Perlovsky and Sakai, 2014; Perlovsky, 2016), coupled with the topodynamic tenets of the 

recently proposed brain operational architectonics (Tozzi et al., 2017), is able to describe the very basic 

syntactic assumptions of the Tractatus.  Further, we propose a new topological-computational approach so as 

to bridge between syntactic and semantic expressions in the human brain. An added motivation is to advance 

towards the construction of semantics-solving machines. 

 

 

A LOGIC LINK BETWEEN SYNTACTIC AND SEMANTIC ISSUES 

 

Here we show how two apparently unsuited approaches (the one equipped with syntactic and logical 

features, the other with semantic and computational structures) can be fruitfully joined, in order to logically 

describe the correlations between the language and the world.   
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“Deep” syntactics: Wittgenstein’s logical correlations between the language and the world.   

Wittgenstein establishes in his Tractatus an isomorphism, a correlation and a quantitative articulation 

between the world (and its basic components) and language (and its basic components) (Figure 1). These 

relationships are located in a fixed and immutable grid, the logical armor, embedded in a logical space where 

isomorphisms between the world and the language occur, through one-to-one-into projections. Starting from 

the simplest terms of this relationship, we have, on the world’s side, the things, i.e., the objects, simple and 

immutable. They stand for the unbridgeable border of the analysis and make up the irreducible substance of 

the world. From the language side, such simplest terms of the relationship stand for names, i.e., words equipped 

with a meaning.  From the world’s side, the second level stands for the states of things, i.e., atomic facts, state 

of affairs, logical connections of things and links of objects. An objects’ configuration is various, changing, 

irregular. Then, from the language side, the states of things stand for elementary propositions, i.e., the atomic 

representations of the objects: they are independent one from each other, equipped with sense and characterized 

by truthful meaning. From the world side, the third higher step are the facts, i.e., configuration relationships, 

portrayals, logic of reality, subsistence of the states of things. From the language side, they stand for the 

composite propositions, i.e., the propositions termed “molecular” that are the logic products of elementary 

propositions. They display the logic properties of language, but do not say anything else. Indeed, they have 

neither meaning, nor content; they just cope with the logical shape, unveiling the word armor. They are true 

and describe the real, despite the nettlesome fact that they do not define a primary, naïve, direct view. Their 

sense depends on the elementary propositions, because they are truth functions of the latter. The highest step 

stands, by one side, for the world itself: it is a limited whole, the logic space of the facts, a pure formal 

universality, a unique, essential structure that fixes up what happens. Note that the totality prevails on the 

simple level. The world’s counterpart, at the highest level, is the language itself, which stands for the limit of 

the world. Life, the subject, the I, is located outside the world and language. Where the subject is located, 

nothing occurs. The subject, being out of the world, stands for the border, the non-content of the world. From 

the subject’s location, the occurring experiences are available not through the ordinary syntax, rather through 

the immediacy of feeling. Accordingly, the role of philosophy is to proceed from the top to the bottom, from 

language to names. It is a top-down approach that starts from the higher level of the world and allows the 

analysis of the lower-levels, i.e., the states of things. 

During the following years, Wittgenstein realized that his model was causing him troubles.The 

elementary, “atomic” structures of the Tractatus stand for both the names and the corresponding things in the 

world.  Yet, how could one be sure that names and things are the very basic structures of the language and the 

world, respectively? How could one be sure that names and things cannot be split in further elementary 

components?  How can I say that this is a “sword”, and not just a collection of pieces, such as the blade, and 

so on? Therefore, the “second” Wittgenstein concluded that the human brain copes with indescribable 

“semantic” issues of words and things.  Indeed, when presented with a proposition, the brain straightforwardly 

understands its grammar and discriminates whether it is correct or wrong, true or false.  Unlike computers, the 
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brain is able to identify signs of sequences in terms of both syntactic symbols and semantic meaning.  How do 

cope with the discrepancy between the logical syntax and the semantics endowed in our brains? Here, 

Perlovsky’s account comes into play.  

 

 “Deep” semantics: Perlovsky’s physical correlations between language, cognition and emotions.   

Perlovsky has developed a multi-level model of neural architecture that permits a computational 

description for the mental mechanisms of language, cognition and emotions (Perlovsky, 2011). A hetero-

hierarchical structure occurs from sensory signals at the bottom, to highest concepts’ representations at the top 

(Friston, 2010; Tozzi et al., 2017), while learning and recognition proceed in parallel with object perception. 

Concept representations stand for mental models of objects and situations. During visual perception, for 

instance, a mental model of the object stored in memory projects an image (top-down signals) onto the visual 

cortex, where it matches an image projected from retina (bottom-up signals).  The brain, according to 

Perlovsky, makes use of “dynamic logic”, i.e., a fuzzy process “from vague-to-crisp” (Ilin et al., 2014), where 

the degree of fuzziness is automatically set, corresponding to the accuracy of the learned models.  In the process 

of learning, models become more and more accurate and association variables become crisper and crisper, so 

to increase and maximize the similarity between top-down and bottom-up messages.  At each hierarchical 

level, concept-models encapsulate the mind’s knowledge, generating top-down neural signals that interact with 

inputs (i.e., bottom-up signals).  Knowledge is not static, rather a continuous process of adaptation and learning 

that takes place in order to understand the ever-changing surrounding world.  Humans are equipped with what 

Perlovsky calls the “knowledge instinct”, an inborn need, a drive to fit top-down and bottom-up signals that 

continuously improve our cognition. Given that cognition is inextricably linked with human language 

(Perlovsky, 2013), every mental semantic representation consists of two model aspects: cognitive and 

linguistic. Meanings are created by symbol-processes in the mind. Language plays a special role because, 

through its ability to accumulate cultural knowledge and communication among people, it provides grounding 

for abstract model-concepts at the higher levels of the mind hierarchy. Therefore, semantic issues, such as 

cognitive activities, language faculties, emotions, and also motivations, are mathematically assessable through 

a series of well-established equations, the “joint language-cognitive models” (Figure 1). These equations 

maximize similarity without combinatorial complexity, due to the matching vagueness of similarity measures 

and the uncertainty of the model. In the process of learning and understanding input signals, models are adapted 

for their better representation, so that the similarity between models and signals increases. This increase in 

similarity satisfies the knowledge instinct and is mentally perceived as aesthetic emotions (Schoeller and 

Perlovsky, 2016).  

Opposite to Wittgenstein’s first model, Perlovsky’s account might be considered a fully semantic one.  

Indeed, he proposes Dynamic logic (DL), i.e., a variant to overcome limitations of “classical” logic (the one 

used by Wittgenstein, after Frege’s and Russell’s modifications). Classical logic is static (e.g., “this is a chair”), 

while DL is a process “from vague-to-crisp”, or in other words, from a vague semantic representation, model, 

decision and plan, to crisp ones. DL could be viewed as a dynamic form of fuzzy logic that automatically sets 
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a degree of fuzziness corresponding to the extent of the acuity each learned model with acuity measured on a 

continuous scale from 0 to 1. For technical readers, the mathematical account of Perlovsky’s procedure is 

provided in Perlovsky (2011).   

 

When Wittgenstein meets Perlovsky.   

As stated above, in the later period of his life, the so called “second” Wittgenstein dismissed the tenets of 

his own Tractatus.  He realized that his syntactic “atomic facts” cannot be accurately described, because they 

just depend of the (semantic) communication context in which they are formulated (therefore, he started to talk 

about “linguistic jokes”).  Here we will show that the late Wittgenstein was wrong, because the syntactic 

treasures of the Tractatus still hold true, when implemented through the Perlovsky’s original account of 

semantics through fuzzy logic (Yoder, 2009). Perlovsky’s tools are appropriate not just for the evaluation of 

every layer of mental hierarchies, cognitive as well as language models, but also for the Tractatus’ content.  

Indeed, the first Wittgenstein’s logical account of syntax and the Perlovsky’s computational treatment of 

semantics display an unnoticed relationship. As illustrated in Figure 1, a clear superimposition occurs between 

their accounts of language and cognition.  In touch with the Tractatus, the joint language-cognitive model is 

organized in parallel hierarchies of language (words, texts) and cognitive models (world’s mental 

representations).  Near the bottom of these hierarchies, words refer to objects.  Higher up, complex texts refer 

to complex situations. This means that words within texts refer to objects within situations (because situations 

are collections of objects), so that reference at higher levels corresponds to the words-objects relationships at 

lower levels. The highest levels (the most general models) can be predicted starting from the lower ones, 

because symbols are psychical processes that create meanings: they involve conscious as well as unconscious 

activities, concepts, emotions and models learned from culture, language and cognition. Therefore, Perlovsky’s 

concept-model, built in order to maximize correspondence between the algorithm internal structure (semantic 

knowledge) and object recognition, establishes that the whole first Wittgenstein’s’ account is mathematically 

assessable and implementable through computational techniques at hand.  

In sum, the tenets of the two influential frameworks may be superimposed, so that strict correspondences 

can be drawn between their single components and levels. This means that the two completely different 

approaches describe the same dynamics, and that syntax and semantics are not as far as we might believe.  We 

may, therefore, draw the conclusion that syntax and semantics display combining features.   
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Figure 1. Wittgenstein’s isomorphic model (in dark squares) superimposed to Perlovsky’s joint language-
cognitive model.  The latter depicts an entire hierarchy from sounds to words and phrases, until the highest 
concepts existing in culture. Both the models display parallel hierarchies of language and cognition (or world), 
where lower-level concepts and things project to higher levels equipped with meanings relevant to situations.   
 
 
LOOKING FOR THE NEURAL CORRELATES OF SYNTAX AND SEMANTICS 

 

In the previous section, we described a rather unexpected correlation between Wittgenstein’s syntax and 

Perlovsky’s semantics. In other words, we established a relationship between a purely logical approach to the 

language and testable psychological issues, such as emotions and subjectivity. The next step is to look for the 

neural correlates that would allow the unification of syntactic and semantic operations in the human brain. We 

need to transfer the above-mentioned syntactic and semantic matching account to the realm of the (natural 

and/or artificial) networks assessed by neuroscience. As we will illustrate in the next paragraphs, the possibility 

of such amalgamation lies in algebraic topology.   

 

Entering topological issues.   

Our central hypothesis is that the human brain, due to its unique operational architectonics (Fingelkurts 

and Fingelkurts, 2001, Fingelkurts et al., 2010), processes syntactic and semantic elements through a change 

in functional and spatial dimensions. This hypothesis is rooted in the work of Walter Freeman related to 

intentionality. Throughout his studies, Freeman provided a comprehensive analysis of brain intentionality. He 
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used the intentional action-perception cycle (Freeman, 1997; Freeman, 2012; Freeman and Vitiello 2006), in 

which individual neurons, neuron populations, and their supporting glia and vasculature architectures generate 

the cortical neurodynamics responsible for perception, cognition, and behavior (Kozma and Freeman, 2009). 

According to this approach, brains are not passive receivers of information, but rather are the active agents that 

search for sensory input (Freeman, 2008; Capolupo et al., 2013). In topological terms, we may state that 

Wittgenstein’s syntactic processing occurs at one operational level of brain activity, but projection is mapped 

to a higher functional/operational level where it is further processed (Tozzi et al., 2017). This extra processing 

gives rise to Perlovsky’s semantic recognition, which encompasses far more information than the original 

Wittgenstein model. An explanation may be framed via new topological developments based on the Borsuk-

Ulam and the Brouwer fixed-point theorems. Accordingly, we will hypothesize that the syntactic elements of 

a language lie on an n-manifold, while the semantic elements of a language lie on an n+1 manifold.  The 

Borsuk-Ulam Theorem (BUT) states that there is a continuous function that maps antipodal points with 

matching descriptions into an n-dimensional space of real numbers. For technical readers, see: Borsuk (1933), 

Matousek (2003), Crabb and Jaworowski (2013), Tozzi and Peters (2016a), Peters (2016). Continuous 

projections from an n-dimensional sphere to a n-dimensional Euclidean space lead to a string-based instance 

of BUT, termed strBUT. We consider a geometric structure with the characteristics of a string (Peters and 

Tozzi, 1016). By definition, a string on the surface of an n-sphere is a line that represents the path traced by a 

particle moving along its surface.  In an abstract geometric space, a string, also termed worldline (Olive, 1987; 

Olive and Landsberg, 1989), is a region of space with either bounded or unbounded lengths. In evaluating a 

string-based BUT, we take into account antipodal sets instead of antipodal points (Petty, 1971). Indeed, in a 

point-free geometry (Di Concilio, 2013; Di Concilio et al., 2017), regions replace points as the primitives.  If 

we assess a worldline in terms of a spatial region on the surface of an n-sphere, or in an n-dimensional normed 

linear space, strings can be defined as antipodal (Figure 2A). Strings are antipodal, provided the regions 

encompassing the strings belong to disjoint parallel hyperplanes which have no points in common. A region 

is called a worldsheet if every one of its sub-regions contains at least one string. The term worldsheet designates 

a nonempty region of a space completely covered by strings, in which every member is a string. A 2D plane 

worldsheet can be rolled up to form the lateral surface of a 3D cylinder, named a worldsheet cylinder. Further, 

a worldsheet cylinder maps to a worldsheet torus, formed by bending the former until the ends meet (Figure 

2A). Hence, a flattened worldsheet maps to a worldsheet cylinder, and a flattened worldsheet cylinder maps to 

a worldsheet torus. This means that a bounded worldsheet cylinder is homotopically equivalent to a worldsheet 

torus. 

The strings on different worldsheets are antipodal and descriptively near, i.e., they share a matching 

description. There is however a difference between the strings embedded in worldsheets of diverse dimensions. 

The higher the dimension of the worldsheet, the more information is encompassed in the strings on the same 

region, because of the higher number of coordinates. Strings contain more information than their projections 

in lower dimensions. This means that strBUT permits the evaluation of system features in higher dimensions—

this in turn increases the amount of detectable information. For example, the 3D shape of a cat can be implied 
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by the contour of its 2D shadow. For the process in reverse with complex points, a decrease in the number of 

dimensions implies that the lower dimensional space is occupied by simpler points. Therefore, strBUT 

provides a method to evaluate changes of information in a topological rather than in a thermodynamic 

framework: a projection mapping to a dimension at a lower level contains multiple mappings to a dimension 

at a higher level. 

Next, we consider Brouwer’s fixed point theorem (FPT). This theorem states that every continuous 

function from an n-sphere into an n+1 sphere has at least one fixed point (Brouwer, 1906). For example, FPT 

applies to a disk-shaped area to guarantee the existence of a fixed point behaving as a sort of whirlpool 

attracting moving particles. A coffee cup illustration of the FPT is given by Su (1997). Regardless of how the 

coffee is stirred without spilling, one point is always in the same position as occupied before the stirring 

commenced. Even more, if that point is moved out of its original position, then some other point is displaced 

back into its original position.  In terms of the strBUT, the FPT means that an n-sphere always contains a 

string. Each string has a particular shape and also comes along together with another string, called a wired 

friend (Peters, 2016). This leads to the wired friend theorem: the instance of a wired friend string with a 

particular shape on the structure Sn maps to a fixed description as another string that belongs to another 

structure Sn+1 (Peters and Tozzi, 2016). The wired friend is recognizable by its shape, because the shape of a 

string is the silhouette of a wired friend string. We obtain maps of wired friend strings, projecting, from the 

2D worksheet, to the cylinder worldsheet, to the torus worldsheet. Therefore, we can always find a structure 

of a higher dimension containing a string that is a description of another string mapped from a structure of 

lower dimension, and vice versa. In the next section, we show how this theorem has important consequences 

in the study of syntactic and semantic brain processing.   

 
Figure 2A. String mappings according to StrBUT. A string (blue spot) maps to a higher dimension, from 
the 2D worldsheet to the 3D worldsheets of the cylinder or torus. The strings on the three different structures 
are equipped with matching descriptions and are thus antipodal. Note that, for the classical BUT, a single string 
on the 2D worksheet maps to two opposite strings on the 3D worldsheets.     
Figure 2B. Syntactic and semantic counterparts of strBUT. On the left, the blue spot stands for a 
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bidimensional syntactic construct. Moving to one higher dimension achieves a third dimension. This further 
dimension stands for the semantic concept of a truth value as YES or NO to mean proof or contradiction. Thus, 
strings gain novel information when projected into structures of a higher dimension.    
 
 
 
Why topology provides the logical chasm between syntactics and semantics.   

By means of strBUT and FTP, we can approach language in terms of both syntactics and semantics. We 

hypothesize that the syntactic elements of a language lie on an n-manifold, while the semantic elements of a 

language lie on an n+1 manifold. A syntactic proposition becomes a semantic argument when brain 

mechanisms project the proposition of one dimension onto a higher dimension for the argument, and the 

reverse process also applies.  In logical terms, we define the syntactic proposition as (p = q)n, where n = 2, and 

the semantic argument as (p=q)n+1. At the higher dimension, we introduce the truth function such that the 

semantic argument returns True or False. For example, consider the syntactic preposition “the-skin-is-tender” 

and the semantic argument equipped with a truth function of True (or Yes): “the skin is tender”. The truth 

value, of course, could be False (or Not) in the case of a disease affecting the skin. We write (the-skin-is-

tender)n and (the skin is tender)n+1, where n stands for the abstract dimensions in which the proposition is 

embedded. The two propositions also stand for two groups, where the n+1 group encompasses the n-group as 

a subgroup. The n+1 group as equipped with a truth function (Yes or No) cannot be detected fully, if we look 

at just the n-group. This is because the n-group exhibits lesser dimensions than the n+1 group. When going 

from a semantic argument to a syntactic proposition, information may be lost at the proposition level due to 

the lower number of coordinates as mapped. This means that the semantic group is assessed first in the higher 

dimension than in the syntactic one. In topological terms, syntactic operations take place when strings as 

linguistic prepositions are placed in a 2D worldsheet, while semantic operations take place when strings as 

linguistic arguments are placed in 3D worldsheets for cylinders and toruses. Therefore, a group equipped with 

the further functionality of True or False is formed through a projective, continuous mechanism (Figure 2B).  

In terms of the classical BUT, semantic elements encompass not just one, but two antipodal strings, equipped 

with a matching description. Such framework is useful when we assess the cortical counterparts of 

propositions. We contrast the two points lying on a higher dimension and the single point lying on a lower 

dimension. The main difference is that the two antipodal points as lying on a higher dimension form a group 

of themselves. That means that semantic processing can be assessed and operationalized solely if we take into 

account a context equipped with dimensions higher than that of syntactic symbols. Furthermore, when the 

dimension n increases, syntactic structures are compared with models existing one dimension higher to show 

similarities. The exponent n+1 simply means a higher spatial or functional dimension in the brain. As we will 

discuss later, computers equipped with nodes dedicated for higher spatial dimensions might be able to process 

semantic arguments too.    

 

Why topology provides the neural chasm between syntactics and semantics.  

In the above Sections, we have hypothesized that the human brain processes syntactic and semantic 
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elements through a change in functional or spatial dimensions. The syntactic processing that occurs at one 

level of brain activity is projected to a higher level; this gives rise to semantic recognition, which encompasses 

more information. Here we point at possible physical brain counterparts.  In the central nervous system, syntax 

displays fewer dimensions than semantics, so that semantic inputs have increased complexity. The first task is 

to determine whether the brain contains different dimensions or not. The term brain dimension may reflect 

either a) functional/operational activity, or b) anatomical/functional connections between cortical areas in the 

form of spatio-temporal patterns. The functional approach a), based on complex network analysis of brain 

signals, assesses the multi-dimensionality of neural space in a brain model viewed as a complex dynamical 

system (Kida et al, 2016; Giusti et al., 2016; Simas et al., 2015). This approach describes nervous dynamics as 

vectors or tensors in pluri-dimensional phase spaces (Stemmler et al., 2015; Benson et al., 2016; Kleinberg et 

al., 2016). Apart from the canonical three dimensions, is also capable of assessing other neural features, such 

as frequency and magnitude, each one representing other possible dimensions (Kida et al, 2016).   The 

anatomical approach b) to brain dimensionality evaluates cortical locations (Tozzi and Peters 2016a, 2016b); 

and as recent advances indicate, brain trajectories may display four spatial dimensions during cortical 

spontaneous activity, instead of the canonical three. Such trajectories are described in terms of torus-shaped 

objects.  The brain representation of syntactic and semantic processing as described in literature seems to 

confirm our topological model.  The left anterior language areas, e.g. Broca’s area (left Brodmann area 44), 

are crucial for syntactic processing in speech production and perception (Skeide and Friederici, 2016; 

Stromswold et al., 1996). This is despite the wide variability between individuals and the presence of diverse 

circuits not dedicated just to a single type of linguistic information processing (Sahin et al., 2009). While 

syntax seems to be localized in relatively fewer and smaller brain areas, semantics is instead scattered 

throughout vast areas of the cortical surface (Huth et al, 2016). This is in agreement with our approach, that 

brings to existence a semantic hierarchy of linguistic thought, through the increasing complexity of joint 

operations that link many functional and transient neuronal assemblies in the brain (Benedetti et al., 2010), 

and a model encompassing StrBUT and the fixed-point theorem that regards semantic concepts as multiple 

antipodal strings on a torus surface—and syntactic concepts appearing as single strings located in specific 

brain zones (Figure 3). This also means that semantics lies in a brain with higher dimensions than syntax. 

According to the dictates of our strBUT model, single strings capture less information than their matching 

descriptions embedded in higher projections. Note that semantic information is not aggregated, rather is 

scattered and hierarchically organized in the brain, as brain operational architectonics predicts (Benedetti et 

al., 2010; Fingelkurts et al., 2003, 2010). Every part of this hierarchical, nested operational architecture is 

simultaneously present to every other part/component, forming a spatial co-presence of semantics (Fingelkurts 

et al., 2012). Syntactic symbols represent single sets of objects, while semantic meanings represent numerous 

sets of objects with matching description.  By extension, we predict that, during the human brain development, 

the semantic processes precede the syntactic ones.  Indeed, children exhibit a slow developmental segregation of 

syntax from semantics (Skeide and Friederici, 2016). The human embryo can already distinguish vowels in utero, 

but grammatical complexity is usually not fully mastered until at least 7 years (Piaget and Inhelder, 1958; 
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Pinker, 2007). In the first three years, children rapidly acquire bottom-up processing skills, primarily 

implemented in the temporal areas. In a further stage until adolescence, top-down processes emerge gradually 

with the increasing structural connectivity of the left inferior frontal cortex (Skeide and Friederici, 2016). This 

means that children are equipped with more semantics than adults. Nevertheless, these valuable insights 

provided by our topological tools need a further development, in order to incorporate the extra cognitive-

emotional complexities of real or “deep” semantics; and it is here that Perlovsky’s model comes into play. 

 

 
 
Figure 3.  The semantic and syntactic brain activity in a topological framework. Mappings take place between 
brain regions which are temporarily equipped with different functional dimensions. On the left, the strBUT 
dictates that higher dimensional activities lie on a torus, where scattered antipodal strings stand for the cortical 
areas activated during semantic activity. On the right, syntactic processes lie on a 2D structure.  In this latter 
case, the movements of the more localized strings contained in the Broca’s area are dictated by the FPT.  Note 
that the process is fully reversible, depending on the direction of the continuous mapping from one dimension 
to another.   
 
 
 
A TOPOLOGICAL MODEL OF KNOWLEDGE ISTINCT 

 

The striking correspondence between the first Wittgenstein’s and Perlovsky’s approaches tells us that we 

can use the powerful tool of the fuzzy logic for the syntactic/semantic assessment of the human language.  

Indeed, Wittgenstein emphasizes the correspondence between the world and the syntactic language, while 

Perlovsky analyzes the relationships between the world and human semantic perception. Putting together the 

two issues, we achieve a useful framework: Perlovsky’s computations can be used in order to correlate the 

world and the two components of the human language. Here follows the procedure in order to operationalize 

the anticipated blend between the two approaches. We will show how, for example, in Tractatus’ terms, 

primary prepositions might stand for higher-dimensional sets of the lower-dimensional words.  In particular, 

as an example, we will focus on the computational treatment of one of the tenets of Perlovsky’s approach, i.e., 

what he calls “knowledge instinct”.  
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Knowledge instinct and topological mappings.   

The derivation of knowledge is represented concisely as a fibre bundle. Briefly, a fibre bundle is a triple 

( ), ,E Bπ , where : E Bπ →  is a projection mapping from a bundle space E to a base space B (Husemoller, 

1994). Fibre bundles are on the threshold of an operational view of a complex collection of mappings that 

includes a projection mapping.  This is the case, since it is a straightforward task to extract from a fibre bundle 

the steps of an algorithm (aka, precise prescription leading to implementations in different settings).  The 

derivation of knowledge instinct L is quite complex.  So, a concise view of this derivation provided by a fibre 

bundle is needed. A fibre bundle representation of the derivation of knowledge instinct L is given in Figures 

4 and 5. Each arrow  in Figure 5 represents a mapping. The blue arrows represent ordinary mappings that 

carry the derivation forward. The blue arrow represents a projection mapping from X(n) to the brain, which 

results in a gathering of antipodal evaluations of X(n), namely, ( )( ( )), ( ( ))m X n X nϕ ϕ − . A particular value 

of knowledge instinct ( , )L M X results from a synthesis of two signals: ( )X n and 

( )( ), ( ( )), ( ( ))M Sm m X n X nϕ ϕ − . 

Let us note that, by means of the above formal expressions, we are allowed to produce a preliminary 

synthesis on a realistic topological, multi-level fuzzy logic that accommodates the basics developments for a 

unified mathematical treatment of both syntax and semantics. Finally, it is a deep semantics where all instances 

of cognitive and emotional complexity may be included.  

 
 

 
 
Figure 4.  Knowledge instinct L(M, X) is a cross product of mappings:  
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( )( )( ) , ( ( )), ( ( )) ( , )X n M Sm m X n X n L M Xϕ ϕ⊗ − → , where ( )X n is the Gaussian of a signal impacting 

on neuron n and concept model ( )( ), ( ( )), ( ( ))M Sm m X n X nϕ ϕ − that includes input from cortical antipodal 
evaluations of X(n) from a toroidal view of the inner workings of the brain, i.e., antipodal values 

( ( )), ( ( ))X n X nϕ ϕ − originate a torus-shaped region of the brain. The cross product is mapped to knowledge 
instinct ( , )L M X . 
 
 

 
Figure 5. Fibre bundle representation of knowledge instinct acquisition. 
 
 
 
CONCLUDING REMARKS  

 

Starting from Wittgenstein’s and Perlovsky’s accounts, we have shown how semantic and syntactic 

abilities of the brain could be investigated in terms of algebraic topology.  We also illustrated how the syntactic 

content of the Tractatus can be assessed in terms of the current neuroscientific language.  Our review of the 

literature data reveals how the connectivity among the brain-active centers changes during the presentation of 

syntactic and semantic inputs (see Benedetti et al., 2010; Fingelkurts et al., 2003 among others), where 

semantic arguments are based on meaning for a truth function, while syntactic propositions on symbolic 

correctness and completeness.  Further, we described how to use the powerful tools of fuzzy logic and topology 

for the systematic evaluation of human language and syntactic/semantics assessment. Building upon 

Perlovsky’s computations blended with topological dynamic approaches, a new avenue appears in order to 

genuinely correlate the world and the two intrinsic components of human language – the syntactic/semantic 

multidimensionality of human words. 

It is noteworthy that these findings also prepare for a novel computational and logical approach beyond 

brain functions. Despite computers can process input on a 2D surface, they are not yet able to evaluate the 

truth function, based on meaning as True or False. Although massively parallel computers are available (Angel 

and Leong, 2014), their kind of multidimensionality does not tackle the outstanding problem of semantics.  
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Indeed, the current multidimensional efforts in computer science focus on: either access methods (sets of 

multidimensional points giving computers support at the physical level (Gaede and Günther, 1998)), or digital 

signal processing (Pastizzo et al, 2002), or data sampling (Mersereau and Speake, 1983).  Therefore, multiple 

dimensions are currently used merely as representational devices for data analysis, causing a limitation in the 

potential of studies assessing artificial intelligence. The fact that brain nodes can be embedded in higher 

dimensional spaces suggests the possibility of manufacturing computers equipped with multidimensional 

nodes endowed in 3D geometric spaces. Yet a computer can be hypothesized having connections that are 

topologically 4D, though embedded in a simple 3D space. The latter computers, implemented in ordinary 3D 

space, but equipped with nodes with the same number of neighbors as points in a 4D cube, could have the 

capability to perform semantic operations. Complex semantics can be extracted from the statistics of input 

features using attractor neural networks (Ursino et al., 2009, 2010, 2011, 2014). These Authors focused on 

how similarity among objects, feature dominance and distinctiveness can be naturally encoded using a 

“simple” Hebbian training. Their model includes a lexical network, representing word-forms and a semantic 

network composed of several areas, each one coding for a different feature. They use a simple taxonomy of 

schematic objects, i.e., a vector of features, with shared categories and distinctive features (individual 

members). However, their model differs from ours, because what they address is the contra-hypothesis to ours, 

namely, that semantic meaning is represented in memory as a collection of features that shrinks and compacts 

the sum of previous sensory, motor, and emotional experiences. 

 

A PHILOSOPHICAL CODA 

 

Our logical/topological approach embodies several previous suggestions by various authors. Hilbert’s 

program states that every true proposition must be demonstrated starting from one of the available axioms. 

Except for those axioms, no other propositions are considered to have inherent truth value, rather they must 

necessarily be assessed through algorithms and computational processing. This means that a demonstrable 

proposition is syntactic, because it could be derived axiomatically by inspection of the symbols, independent 

on semantic meaning. However, the Gödel’s first incompleteness theorem suggests that, given a group of 

arithmetical axioms, there will always be a true arithmetic to be discovered which cannot be demonstrated 

starting from the axioms suggested by Hilbert’s approach.  Indeed, the theorem states that, if we limit ourselves 

to syntactic methods of reasoning, then there will always be truths that are not accessible to us. 

Syntactic models are inadequate to understand all the properties of an otherwise semantically 

understandable model. For example, our mental model of natural numbers cannot be completely characterized 

through syntactic methods. Further, how can we be sure that all the axioms are true? Their truth depends just 

on the universe of discourse, because the concept of truth has to do with semantics. According to formalists, 

axioms are indeed just starting points of linguistic jokes (Wittgenstein, 1953), so that the choice of an axiom 

looks like writing the rules of a table game. Therefore, every proposition, even if entirely false, is theoretically 

demonstrable, provided we start from an erratic group of faulty axioms. 
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Our model sheds new light on some of these issues. While Hilbert describes real objects in terms of 

mathematical axioms, we describe them in terms of projections and mappings. Maps from the lower syntactic 

dimension to the higher semantic dimension rule out the limitations invoked by Gödel’s theorems. In a 

language, paraphrasing Charles Ball (Ferguson, Farwell, 1975), the groups of words and expressions are 

correlated both with their shapes and meanings, which pertain to the same conceptual sphere and to different 

dimensions. We could imagine that syntax works with individual symbols, while semantics works instead with 

groups of intrinsically correlated symbols.  We mention in passing that we did not tackle the issue of the third 

linguistic subfield (together with syntax and semantics) of pragmatics, which investigates the ways in which 

context and use contribute to meaning (Mey 2001). Our results form a platform model for a forthcoming 

interpretation of pragmatics, in terms of dimensions even higher than the semantic ones.  

We conclude with excerpts from Wittgenstein’s Philosophical Investigations (1953), where the author 

seems to foreshadow the topological computational model framework in which propositions are embedded:  

"Suppose someone said: every familiar word, in a book for example, actually carries an atmosphere 
with it in our minds, a 'corona' of lightly indicated uses.  Just as if each figure in a painting were 
surrounded by delicate shadowy drawings of scenes, as it were in another dimension, and in them 
we saw the figures in different contexts (IIVI)." 
"But how is it possible to see an object according to an interpretation?—The question represents it 
as a queer fact; as if something were being forced into a form it did not really fit. But no squeezing, 
no forcing took place here. When it looks as if there were no room for such a form between other 
ones you have to look for it in another dimension. If there is no room here, there is room in another 
dimension (IIXI)."  
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